qmk_sweep_skeletyl/keyboards/converter/palm_usb/matrix.c

382 lines
8.1 KiB
C
Raw Normal View History

/*
Copyright 2018 milestogo
with elements Copyright 2014 cy384 under a modified BSD license
building on qmk structure Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
#include "uart.h"
#include "timer.h"
/*
* Matrix Array usage:
*
* ROW: 12(4bits)
* COL: 8(3bits)
*
* +---------+
* 0|00 ... 07|
* 1|00 ... 07|
* :| ... |
* :| ... |
* A| |
* B| |
* +---------+
*/
static uint8_t matrix[MATRIX_ROWS];
// we're going to need a sleep timer
static uint16_t last_activity ;
// and a byte to track duplicate up events signalling all keys up.
static uint16_t last_upKey ;
// serial device can disconnect. Check every MAXDROP characters.
static uint16_t disconnect_counter = 0;
// bitmath masks.
#define KEY_MASK 0b10000000
#define COL_MASK 0b00000111
#define ROW_MASK 0b01111000
#define ROW(code) (( code & ROW_MASK ) >>3)
#define COL(code) ((code & COL_MASK) )
#define KEYUP(code) ((code & KEY_MASK) >>7 )
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void pins_init(void) {
// set pins for pullups, Rts , power &etc.
//print ("pins setup\n");
2020-04-30 08:24:47 +02:00
setPinOutput(VCC_PIN);
writePinLow(VCC_PIN);
#if ( HANDSPRING == 0)
#ifdef CY835
2020-04-30 08:24:47 +02:00
setPinOutput(GND_PIN);
writePinLow(GND_PIN);
2020-04-30 08:24:47 +02:00
setPinOutput(PULLDOWN_PIN);
writePinLow(PULLDOWN_PIN);
#endif
2020-04-30 08:24:47 +02:00
setPinInput(DCD_PIN);
setPinInput(RTS_PIN);
#endif
/* check that the other side isn't powered up.
2020-04-30 08:24:47 +02:00
test=readPin(DCD_PIN);
xprintf("b%02X:", test);
2020-04-30 08:24:47 +02:00
test=readPin(RTS_PIN);
xprintf("%02X\n", test);
*/
}
uint8_t rts_reset(void) {
static uint8_t firstread ;
/* bounce RTS so device knows it is rebooted */
// On boot, we keep rts as input, then switch roles here
// on leaving sleep, we toggle the same way
2020-04-30 08:24:47 +02:00
firstread=readPin(RTS_PIN);
// printf("r%02X:", firstread);
2020-04-30 08:24:47 +02:00
setPinOutput(RTS_PIN);
2020-04-30 08:24:47 +02:00
if (firstread) {
writePinLow(RTS_PIN);
}
_delay_ms(10);
2020-04-30 08:24:47 +02:00
writePinHigh(RTS_PIN);
/* the future is Arm
2020-04-30 08:24:47 +02:00
if (!palReadPad(RTS_PIN_IOPRT))
{
_delay_ms(10);
palSetPadMode(RTS_PINn_IOPORT, PinDirectionOutput_PUSHPULL);
palSetPad(RTS_PORT, RTS_PIN);
}
else
{
palSetPadMode(RTS_PIN_RTS_PORT, PinDirectionOutput_PUSHPULL);
palSetPad(RTS_PORT, RTS_PIN);
palClearPad(RTS_PORT, RTS_PIN);
_delay_ms(10);
palSetPad(RTS_PORT, RTS_PIN);
}
*/
_delay_ms(5);
//print("rts\n");
return 1;
}
uint8_t get_serial_byte(void) {
static uint8_t code;
while(1) {
code = uart_read();
if (code) {
debug_hex(code); debug(" ");
return code;
}
}
}
uint8_t palm_handshake(void) {
// assumes something has seen DCD go high, we've toggled RTS
// and we now need to verify handshake.
// listen for up to 4 packets before giving up.
// usually I get the sequence FF FA FD
static uint8_t codeA=0;
for (uint8_t i=0; i < 5; i++) {
codeA=get_serial_byte();
if ( 0xFA == codeA) {
if( 0xFD == get_serial_byte()) {
return 1;
}
}
}
return 0;
}
uint8_t palm_reset(void) {
print("@");
rts_reset(); // shouldn't need to power cycle.
if ( palm_handshake() ) {
last_activity = timer_read();
return 1;
} else {
print("failed reset");
return 0;
}
}
uint8_t handspring_handshake(void) {
// should be sent 15 ms after power up.
// listen for up to 4 packets before giving up.
static uint8_t codeA=0;
for (uint8_t i=0; i < 5; i++) {
codeA=get_serial_byte();
if ( 0xF9 == codeA) {
if( 0xFB == get_serial_byte()) {
return 1;
}
}
}
return 0;
}
uint8_t handspring_reset(void) {
2020-04-30 08:24:47 +02:00
writePinLow(VCC_PIN);
_delay_ms(5);
2020-04-30 08:24:47 +02:00
writePinHigh(VCC_PIN);
if ( handspring_handshake() ) {
last_activity = timer_read();
disconnect_counter=0;
return 1;
} else {
print("-HSreset");
return 0;
}
}
void matrix_init(void)
{
debug_enable = true;
//debug_matrix =true;
uart_init(9600); // arguments all #defined
#if (HANDSPRING == 0)
pins_init(); // set all inputs and outputs.
#endif
print("power up\n");
2020-04-30 08:24:47 +02:00
writePinHigh(VCC_PIN);
// wait for DCD strobe from keyboard - it will do this
// up to 3 times, then the board needs the RTS toggled to try again
#if ( HANDSPRING == 1)
if ( handspring_handshake() ) {
last_activity = timer_read();
} else {
print("failed handshake");
_delay_ms(1000);
//BUG /should/ power cycle or toggle RTS & reset, but this usually works.
}
#else /// Palm / HP device with DCD
2020-04-30 08:24:47 +02:00
while( !readPin(DCD_PIN) ) {;}
print("dcd\n");
rts_reset(); // at this point the keyboard should think all is well.
if ( palm_handshake() ) {
last_activity = timer_read();
} else {
print("failed handshake");
_delay_ms(1000);
//BUG /should/ power cycle or toggle RTS & reset, but this usually works.
}
#endif
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) matrix[i] = 0x00;
matrix_init_quantum();
return;
}
uint8_t matrix_scan(void)
{
uint8_t code;
code = uart_read();
if (!code) {
/*
disconnect_counter ++;
if (disconnect_counter > MAXDROP) {
// set all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) matrix[i] = 0x00;
}
*/
// check if the keyboard is asleep.
if (timer_elapsed(last_activity) > SLEEP_TIMEOUT) {
#if(HANDSPRING ==0 )
palm_reset();
#else
handspring_reset();
#endif
return 0;
}
}
last_activity = timer_read();
disconnect_counter=0; // if we are getting serial data, we're connected.
debug_hex(code); debug(" ");
switch (code) {
case 0xFD: // unexpected reset byte 2
print("rstD ");
return 0;
case 0xFA: // unexpected reset
print("rstA ");
return 0;
}
if (KEYUP(code)) {
if (code == last_upKey) {
// all keys are not pressed.
// Manual says to disable all modifiers left open now.
// but that could defeat sticky keys.
// BUG? dropping this byte.
last_upKey=0;
return 0;
}
// release
if (matrix_is_on(ROW(code), COL(code))) {
matrix[ROW(code)] &= ~(1<<COL(code));
last_upKey=code;
}
} else {
// press
if (!matrix_is_on(ROW(code), COL(code))) {
matrix[ROW(code)] |= (1<<COL(code));
}
}
matrix_scan_quantum();
return code;
}
inline
bool matrix_has_ghost(void)
{
return false;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & (1<<col));
}
inline
uint8_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 01234567\n");
for (uint8_t row = 0; row < matrix_rows(); row++) {
print_hex8(row); print(": ");
print_bin_reverse8(matrix_get_row(row));
print("\n");
}
}