2018-10-22 20:41:57 +02:00
|
|
|
/* Copyright 2017 Mattia Dal Ben
|
2019-01-27 16:30:25 +10:00
|
|
|
*
|
2018-10-22 20:41:57 +02:00
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
2019-01-27 16:30:25 +10:00
|
|
|
*
|
2018-10-22 20:41:57 +02:00
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
2019-01-27 16:30:25 +10:00
|
|
|
*
|
2018-10-22 20:41:57 +02:00
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
2021-12-27 21:15:56 +11:00
|
|
|
|
|
|
|
#include "quantum.h"
|
2018-10-22 20:41:57 +02:00
|
|
|
#include "matrix.h"
|
2021-12-15 22:00:39 +11:00
|
|
|
#include "uart.h"
|
2018-10-22 20:41:57 +02:00
|
|
|
|
2021-12-27 21:15:56 +11:00
|
|
|
void matrix_init_custom(void) {
|
2021-12-15 22:00:39 +11:00
|
|
|
uart_init(1000000);
|
2018-10-22 20:41:57 +02:00
|
|
|
}
|
|
|
|
|
2021-12-27 21:15:56 +11:00
|
|
|
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
|
2018-10-22 20:41:57 +02:00
|
|
|
uint32_t timeout = 0;
|
2021-12-27 21:15:56 +11:00
|
|
|
bool changed = false;
|
2018-10-22 20:41:57 +02:00
|
|
|
|
|
|
|
//the s character requests the RF slave to send the matrix
|
2021-12-15 22:00:39 +11:00
|
|
|
uart_write('s');
|
2018-10-22 20:41:57 +02:00
|
|
|
|
|
|
|
//trust the external keystates entirely, erase the last data
|
|
|
|
uint8_t uart_data[11] = {0};
|
|
|
|
|
|
|
|
//there are 14 bytes corresponding to 14 columns, and an end byte
|
|
|
|
for (uint8_t i = 0; i < 11; i++) {
|
|
|
|
//wait for the serial data, timeout if it's been too long
|
|
|
|
//this only happened in testing with a loose wire, but does no
|
|
|
|
//harm to leave it in here
|
2021-12-27 21:15:56 +11:00
|
|
|
while (!uart_available()) {
|
2018-10-22 20:41:57 +02:00
|
|
|
timeout++;
|
2021-12-27 21:15:56 +11:00
|
|
|
if (timeout > 10000) {
|
2018-10-22 20:41:57 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2021-12-15 22:00:39 +11:00
|
|
|
uart_data[i] = uart_read();
|
2018-10-22 20:41:57 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
//check for the end packet, the key state bytes use the LSBs, so 0xE0
|
|
|
|
//will only show up here if the correct bytes were recieved
|
2021-12-27 21:15:56 +11:00
|
|
|
if (uart_data[10] == 0xE0) {
|
2018-10-22 20:41:57 +02:00
|
|
|
//shifting and transferring the keystates to the QMK matrix variable
|
|
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
2021-12-27 21:15:56 +11:00
|
|
|
matrix_row_t current_row = (uint16_t) uart_data[i * 2] | (uint16_t) uart_data[i * 2 + 1] << 7;
|
|
|
|
if (current_matrix[i] != current_row) {
|
|
|
|
changed = true;
|
|
|
|
}
|
|
|
|
current_matrix[i] = current_row;
|
2018-10-22 20:41:57 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-12-27 21:15:56 +11:00
|
|
|
return changed;
|
2018-10-22 20:41:57 +02:00
|
|
|
}
|