This feature allows you to use RGB LED matrices driven by external drivers. It hooks into the RGBLIGHT system so you can use the same keycodes as RGBLIGHT to control it.
If you want to use single color LED's you should use the [LED Matrix Subsystem](feature_led_matrix.md) instead.
You can use between 1 and 4 IS31FL3731 IC's. Do not specify `DRIVER_ADDR_<N>` defines for IC's that are not present on your keyboard. You can define the following items in `config.h`:
| Variable | Description | Default |
|----------|-------------|---------|
| `ISSI_TIMEOUT` | (Optional) How long to wait for i2c messages, in milliseconds | 100 |
| `ISSI_PERSISTENCE` | (Optional) Retry failed messages this many times | 0 |
!> Note the parentheses, this is so when `RGB_MATRIX_LED_COUNT` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
For split keyboards using `RGB_MATRIX_SPLIT` with an LED driver, you can either have the same driver address or different driver addresses. If using different addresses, use `DRIVER_ADDR_1` for one and `DRIVER_ADDR_2` for the other one. Then, in `g_is31_leds`, fill out the correct driver index (0 or 1). If using one address, use `DRIVER_ADDR_1` for both, and use index 0 for `g_is31_leds`.
Where `Cx_y` is the location of the LED in the matrix defined by [the datasheet](https://www.issi.com/WW/pdf/31FL3731.pdf) and the header file `drivers/led/issi/is31fl3731.h`. The `driver` is the index of the driver you defined in your `config.h` (`0`, `1`, `2`, or `3`).
You can use between 1 and 4 IS31FL3733 IC's. Do not specify `DRIVER_ADDR_<N>` defines for IC's that are not present on your keyboard. You can define the following items in `config.h`:
| Variable | Description | Default |
|----------|-------------|---------|
| `ISSI_TIMEOUT` | (Optional) How long to wait for i2c messages, in milliseconds | 100 |
| `ISSI_PERSISTENCE` | (Optional) Retry failed messages this many times | 0 |
The IS31FL3733 IC's have on-chip resistors that can be enabled to allow for de-ghosting of the RGB matrix. By default these resistors are not enabled (`ISSI_SWPULLUP`/`ISSI_CSPULLUP` are given the value of`PUR_0R`), the values that can be set to enable de-ghosting are as follows:
| `ISSI_SWPULLUP/ISSI_CSPULLUP` | Description |
|----------------------|-------------|
| `PUR_0R` | (default) Do not use the on-chip resistors/enable de-ghosting |
| `PUR_05KR` | The 0.5k Ohm resistor used during blanking period (t_NOL) |
| `PUR_3KR` | The 3k Ohm resistor used at all times |
| `PUR_4KR` | The 4k Ohm resistor used at all times |
| `PUR_8KR` | The 8k Ohm resistor used at all times |
| `PUR_16KR` | The 16k Ohm resistor used at all times |
| `PUR_32KR` | The 32k Ohm resistor used during blanking period (t_NOL) |
!> Note the parentheses, this is so when `RGB_MATRIX_LED_COUNT` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
Where `X_Y` is the location of the LED in the matrix defined by [the datasheet](https://www.issi.com/WW/pdf/31FL3733.pdf) and the header file `drivers/led/issi/is31fl3733.h`. The `driver` is the index of the driver you defined in your `config.h` (`0`, `1`, `2`, or `3` for now).
The IS31FL3737 IC's have on-chip resistors that can be enabled to allow for de-ghosting of the RGB matrix. By default these resistors are not enabled (`ISSI_SWPULLUP`/`ISSI_CSPULLUP` are given the value of`PUR_0R`), the values that can be set to enable de-ghosting are as follows:
| `ISSI_SWPULLUP/ISSI_CSPULLUP` | Description |
|----------------------|-------------|
| `PUR_0R` | (default) Do not use the on-chip resistors/enable de-ghosting |
| `PUR_05KR` | The 0.5k Ohm resistor used during blanking period (t_NOL) |
| `PUR_1KR` | The 1k Ohm resistor used during blanking period (t_NOL) |
| `PUR_2KR` | The 2k Ohm resistor used during blanking period (t_NOL) |
| `PUR_4KR` | The 4k Ohm resistor used during blanking period (t_NOL) |
| `PUR_8KR` | The 8k Ohm resistor during blanking period (t_NOL) |
| `PUR_16KR` | The 16k Ohm resistor during blanking period (t_NOL) |
| `PUR_32KR` | The 32k Ohm resistor used during blanking period (t_NOL) |
!> Note the parentheses, this is so when `RGB_MATRIX_LED_COUNT` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
Where `X_Y` is the location of the LED in the matrix defined by [the datasheet](https://www.issi.com/WW/pdf/31FL3737.pdf) and the header file `drivers/led/issi/is31fl3737.h`. The `driver` is the index of the driver you defined in your `config.h` (Only `0`, `1`, `2`, or `3` for now).
There is basic support for addressable RGB matrix lighting with a selection of I2C ISSI Lumissil RGB controllers through a shared common driver. To enable it, add this to your `rules.mk`:
```makefile
RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = <drivername>
```
Where `<driver name>` is the applicable LED driver chip as below
You can use between 1 and 4 IC's. Do not specify `DRIVER_ADDR_<N>` define for IC's if not present on your keyboard. The `DRIVER_ADDR_1` default assumes that all Address pins on the controller have been connected to GND. Drivers that have SYNC functionality have the default settings to disable if 1 driver. If more than 1 drivers then `DRIVER_ADDR_1` will be set to Master and the remaining ones set to Slave.
Configure the hardware via your `config.h`:
| Variable | Description | Default |
|----------|-------------|---------|
| `ISSI_TIMEOUT` | (Optional) How long to wait for i2c messages, in milliseconds | 100 |
| `ISSI_PERSISTENCE` | (Optional) Retry failed messages this many times | 0 |
| `DRIVER_COUNT` | (Required) How many RGB driver IC's are present | |
!> Note the parentheses, this is so when `RGB_MATRIX_LED_COUNT` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
Currently only 4 drivers are supported, but it would be trivial to support for more. Note that using a combination of different drivers is not supported. All drivers must be of the same model.
Define these arrays listing all the LEDs in your `<keyboard>.c`:
Where `CSx_SWx` is the location of the LED in the matrix defined by the datasheet. The `driver` is the index of the driver you defined in your `config.h` (`0`, `1`, `2`, or `3` for now).
`ISSI_MANUAL_SCALING` is used to override the Scaling for individual LED's. By default they will be set as per `ISSI_SCAL_<colour>`. In `config.h` set how many LED's you want to manually set scaling for.
Eg `#define ISSI_MANUAL_SCALING 3`
Then Define the array listing all the LEDs you want to override in your `<keyboard>.c`:
There is basic support for addressable RGB matrix lighting with a WS2811/WS2812{a,b,c} addressable LED strand. To enable it, add this to your `rules.mk`:
?> There are additional configuration options for ARM controllers that offer increased performance over the default bitbang driver. Please see [WS2812 Driver](ws2812_driver.md) for more information.
You can use up to 2 AW20216 IC's. Do not specify `DRIVER_<N>_xxx` defines for IC's that are not present on your keyboard. You can define the following items in `config.h`:
| Variable | Description | Default |
|----------|-------------|---------|
| `DRIVER_1_CS` | (Required) MCU pin connected to first RGB driver chip select line | B13 |
| `DRIVER_2_CS` | (Optional) MCU pin connected to second RGB driver chip select line | |
| `DRIVER_1_EN` | (Required) MCU pin connected to first RGB driver hardware enable line | C13 |
| `DRIVER_2_EN` | (Optional) MCU pin connected to second RGB driver hardware enable line | |
| `DRIVER_1_LED_TOTAL` | (Required) How many RGB lights are connected to first RGB driver | |
| `DRIVER_2_LED_TOTAL` | (Optional) How many RGB lights are connected to second RGB driver | |
| `DRIVER_COUNT` | (Required) How many RGB driver IC's are present | |
| `AW_SPI_DIVISOR` | (Optional) Clock divisor for SPI communication (powers of 2, smaller numbers means faster communication, should not be less than 4) | 4 |
!> Note the parentheses, this is so when `RGB_MATRIX_LED_COUNT` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
From this point forward the configuration is the same for all the drivers. The `led_config_t` struct provides a key electrical matrix to led index lookup table, what the physical position of each LED is on the board, and what type of key or usage the LED if the LED represents. Here is a brief example:
The first part, `// Key Matrix to LED Index`, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, `// LED Index to Physical Position` represents the LED's physical `{ x, y }` position on the keyboard. The default expected range of values for `{ x, y }` is the inclusive range `{ 0..224, 0..64 }`. This default expected range is due to effects that calculate the center of the keyboard for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents `{ x, y }` coordinate `{ 0, 0 }` and the bottom right of your keyboard represents `{ 224, 64 }`. Using this as a basis, you can use the following formula to calculate the physical position:
As mentioned earlier, the center of the keyboard by default is expected to be `{ 112, 32 }`, but this can be changed if you want to more accurately calculate the LED's physical `{ x, y }` positions. Keyboard designers can implement `#define RGB_MATRIX_CENTER { 112, 32 }` in their config.h file with the new center point of the keyboard, or where they want it to be allowing more possibilities for the `{ x, y }` values. Do note that the maximum value for x or y is 255, and the recommended maximum is 224 as this gives animations runoff room before they reset.
`RGB_MODE_PLAIN`, `RGB_MODE_BREATHE`, `RGB_MODE_RAINBOW`, and `RGB_MODE_SWIRL` are the only ones that are mapped properly. The rest don't have a direct equivalent, and are not mapped.
?> `RGB_*` keycodes cannot be used with functions like `tap_code16(RGB_HUD)` as they're not USB HID keycodes. If you wish to replicate similar behaviour in custom code within your firmware (e.g. inside `encoder_update_user()` or `process_record_user()`), the equivalent [RGB functions](#functions) should be used instead.
!> By default, if you have both the [RGB Light](feature_rgblight.md) and the RGB Matrix feature enabled, these keycodes will work for both features, at the same time. You can disable the keycode functionality by defining the `*_DISABLE_KEYCODES` option for the specific feature.
All effects have been configured to support current configuration values (Hue, Saturation, Value, & Speed) unless otherwise noted below. These are the effects that are currently available:
This effect will color the RGB matrix according to a heatmap of recently pressed keys. Whenever a key is pressed its "temperature" increases as well as that of its neighboring keys. The temperature of each key is then decreased automatically every 25 milliseconds by default.
As heatmap uses the physical position of the leds set in the g_led_config, you may need to tweak the following options to get the best effect for your keyboard. Note the size of this grid is `224x64`.
Limit the distance the effect spreads to surrounding keys.
```c
#define RGB_MATRIX_TYPING_HEATMAP_SPREAD 40
```
Limit how hot surrounding keys get from each press.
Solid reactive effects will pulse RGB light on key presses with user configurable hues. To enable gradient mode that will automatically change reactive color, add the following define:
```c
#define RGB_MATRIX_SOLID_REACTIVE_GRADIENT_MODE
```
Gradient mode will loop through the color wheel hues over time and its duration can be controlled with the effect speed keycodes (`RGB_SPI`/`RGB_SPD`).
By setting `RGB_MATRIX_CUSTOM_USER = yes` in `rules.mk`, new effects can be defined directly from your keymap or userspace, without having to edit any QMK core files. To declare new effects, create a `rgb_matrix_user.inc` file in the user keymap directory or userspace folder.
?> Hardware maintainers who want to limit custom effects to a specific keyboard can create a `rgb_matrix_kb.inc` file in the root of the keyboard directory, and add `RGB_MATRIX_CUSTOM_KB = yes` to the keyboard level `rules.mk`.
To use custom effects in your code, simply prepend `RGB_MATRIX_CUSTOM_` to the effect name specified in `RGB_MATRIX_EFFECT()`. For example, an effect declared as `RGB_MATRIX_EFFECT(my_cool_effect)` would be referenced with:
#define RGB_MATRIX_LED_PROCESS_LIMIT (RGB_MATRIX_LED_COUNT + 4) / 5 // limits the number of LEDs to process in an animation per task run (increases keyboard responsiveness)
#define RGB_MATRIX_LED_FLUSH_LIMIT 16 // limits in milliseconds how frequently an animation will update the LEDs. 16 (16ms) is equivalent to limiting to 60fps (increases keyboard responsiveness)
#define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
#define RGB_TRIGGER_ON_KEYDOWN // Triggers RGB keypress events on key down. This makes RGB control feel more responsive. This may cause RGB to not function properly on some boards
The EEPROM for it is currently shared with the LED Matrix system (it's generally assumed only one feature would be used at a time), but could be configured to use its own 32bit address with:
|`rgb_matrix_set_color(index, r, g, b)` |Set a single LED to the given RGB value, where `r`/`g`/`b` are between 0 and 255, and `index` is between 0 and `RGB_MATRIX_LED_COUNT` (not written to EEPROM) |
|`rgb_matrix_step_reverse_noeeprom()` |Change the mode to the previous RGB animation in the list of enabled RGB animations (not written to EEPROM) |
|`rgb_matrix_increase_speed()` |Increase the speed of the animations |
|`rgb_matrix_increase_speed_noeeprom()` |Increase the speed of the animations (not written to EEPROM) |
|`rgb_matrix_decrease_speed()` |Decrease the speed of the animations |
|`rgb_matrix_decrease_speed_noeeprom()` |Decrease the speed of the animations (not written to EEPROM) |
|`rgb_matrix_set_speed(speed)` |Set the speed of the animations to the given value where `speed` is between 0 and 255 |
|`rgb_matrix_set_speed_noeeprom(speed)` |Set the speed of the animations to the given value where `speed` is between 0 and 255 (not written to EEPROM) |
|`rgb_matrix_increase_sat_noeeprom()` |Increase the saturation for effect range LEDs. This wraps around at maximum saturation (not written to EEPROM) |
|`rgb_matrix_decrease_sat_noeeprom()` |Decrease the saturation for effect range LEDs. This wraps around at minimum saturation (not written to EEPROM) |
|`rgb_matrix_is_enabled()` |Gets current on/off status |
|`rgb_matrix_get_mode()` |Gets current mode |
|`rgb_matrix_get_hue()` |Gets current hue |
|`rgb_matrix_get_sat()` |Gets current sat |
|`rgb_matrix_get_val()` |Gets current val |
|`rgb_matrix_get_hsv()` |Gets hue, sat, and val and returns a [`HSV` structure](https://github.com/qmk/qmk_firmware/blob/7ba6456c0b2e041bb9f97dbed265c5b8b4b12192/quantum/color.h#L56-L61)|
|`rgb_matrix_get_speed()` |Gets current speed |
|`rgb_matrix_get_suspend_state()` |Gets current suspend state |
If you want to set custom indicators, such as an LED for Caps Lock, or layer indication, you can use the `rgb_matrix_indicators_kb` or `rgb_matrix_indicators_user` function for that:
In addition, there are the advanced indicator functions. These are aimed at those with heavily customized displays, where rendering every LED per cycle is expensive. Such as some of the "drashna" layouts. This includes a special macro to help make this easier to use: `RGB_MATRIX_INDICATOR_SET_COLOR(i, r, g, b)`.
?> Split keyboards will require layer state data syncing with `#define SPLIT_LAYER_STATE_ENABLE`. See [Data Sync Options](feature_split_keyboard?id=data-sync-options) for more details.
This example sets the modifiers to be a specific color based on the layer state. You can use a switch case here, instead, if you would like. This uses HSV and then converts to RGB, because this allows the brightness to be limited (important when using the WS2812 driver).
!> RGB indicators on split keyboards will require state information synced to the slave half (e.g. `#define SPLIT_LAYER_STATE_ENABLE`). See [data sync options](feature_split_keyboard.md#data-sync-options) for more details.
If you want to just use RGB indicators without RGB matrix effect, it is not possible to disable the latter because toggling RGB off will disable everything. You can workaround it with solid effect and colors off using this init function: