Made AVR backlight pwm resolution configurable (#7521)
* Made static backlight pwm resolution configurable * Made breathing backlighting configurable too * Finished my ifdef * Ran clang-format * Added missing semi-colon * Solved weird behaviour by right-shifting the right amount * Made breathing period scaled on actual pwm frequency * Made the low end deadzone scaled on the top value * Moved 'pwm_frequency' declaration outside ifdef * Fixed 'never used' error * Fixed 'never used' error * Fixed breathing ISR to 120Hz * Removed pwm_frequency constant Constant is no longer needed since running the breathing ISR at a fixed 120Hz * Re-add brightness limiting * re-introduce scaling
This commit is contained in:
parent
121a2e0f07
commit
e0a5056963
1 changed files with 68 additions and 41 deletions
|
@ -199,13 +199,14 @@ static inline void disable_pwm(void) {
|
||||||
// reaches the backlight level, where we turn off the LEDs,
|
// reaches the backlight level, where we turn off the LEDs,
|
||||||
// but also an overflow interrupt when the counter rolls back to 0,
|
// but also an overflow interrupt when the counter rolls back to 0,
|
||||||
// in which we're going to turn on the LEDs.
|
// in which we're going to turn on the LEDs.
|
||||||
// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz.
|
// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz,
|
||||||
|
// or F_CPU/BACKLIGHT_CUSTOM_RESOLUTION if used.
|
||||||
|
|
||||||
// Triggered when the counter reaches the OCRx value
|
// Triggered when the counter reaches the OCRx value
|
||||||
ISR(TIMERx_COMPA_vect) { backlight_pins_off(); }
|
ISR(TIMERx_COMPA_vect) { backlight_pins_off(); }
|
||||||
|
|
||||||
// Triggered when the counter reaches the TOP value
|
// Triggered when the counter reaches the TOP value
|
||||||
// this one triggers at F_CPU/65536 =~ 244 Hz
|
// this one triggers at F_CPU/ICRx = 16MHz/65536 =~ 244 Hz
|
||||||
ISR(TIMERx_OVF_vect) {
|
ISR(TIMERx_OVF_vect) {
|
||||||
# ifdef BACKLIGHT_BREATHING
|
# ifdef BACKLIGHT_BREATHING
|
||||||
if (is_breathing()) {
|
if (is_breathing()) {
|
||||||
|
@ -220,8 +221,8 @@ ISR(TIMERx_OVF_vect) {
|
||||||
// artifacts (especially while breathing, because breathing_task
|
// artifacts (especially while breathing, because breathing_task
|
||||||
// takes many computation cycles).
|
// takes many computation cycles).
|
||||||
// so better not turn them on while the counter TOP is very low.
|
// so better not turn them on while the counter TOP is very low.
|
||||||
if (OCRxx > 256) {
|
if (OCRxx > ICRx / 250 + 5) {
|
||||||
backlight_pins_on();
|
FOR_EACH_LED(backlight_on(backlight_pin);)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -231,24 +232,26 @@ ISR(TIMERx_OVF_vect) {
|
||||||
|
|
||||||
// See http://jared.geek.nz/2013/feb/linear-led-pwm
|
// See http://jared.geek.nz/2013/feb/linear-led-pwm
|
||||||
static uint16_t cie_lightness(uint16_t v) {
|
static uint16_t cie_lightness(uint16_t v) {
|
||||||
if (v <= 5243) // if below 8% of max
|
if (v <= ICRx / 12) // If the value is less than or equal to ~8% of max
|
||||||
return v / 9; // same as dividing by 900%
|
{
|
||||||
else {
|
return v / 9; // Same as dividing by 900%
|
||||||
uint32_t y = (((uint32_t)v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
|
} else {
|
||||||
// to get a useful result with integer division, we shift left in the expression above
|
// In the next two lines values are bit-shifted. This is to avoid loosing decimals in integer math.
|
||||||
// and revert what we've done again after squaring.
|
uint32_t y = (((uint32_t)v + ICRx / 6) << 5) / (ICRx / 6 + ICRx); // If above 8%, add ~16% of max, and normalize with (max + ~16% max)
|
||||||
y = y * y * y >> 8;
|
uint32_t out = (y * y * y * ICRx) >> 15; // Cube it and undo the bit-shifting. (which is now three times as much due to the cubing)
|
||||||
if (y > 0xFFFFUL) // prevent overflow
|
|
||||||
return 0xFFFFU;
|
if (out > ICRx) // Avoid overflows
|
||||||
else
|
{
|
||||||
return (uint16_t)y;
|
out = ICRx;
|
||||||
|
}
|
||||||
|
return out;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// rescale the supplied backlight value to be in terms of the value limit
|
// rescale the supplied backlight value to be in terms of the value limit // range for val is [0..ICRx]. PWM pin is high while the timer count is below val.
|
||||||
static uint32_t rescale_limit_val(uint32_t val) { return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256; }
|
static uint32_t rescale_limit_val(uint32_t val) { return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256; }
|
||||||
|
|
||||||
// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
|
// range for val is [0..ICRx]. PWM pin is high while the timer count is below val.
|
||||||
static inline void set_pwm(uint16_t val) { OCRxx = val; }
|
static inline void set_pwm(uint16_t val) { OCRxx = val; }
|
||||||
|
|
||||||
void backlight_set(uint8_t level) {
|
void backlight_set(uint8_t level) {
|
||||||
|
@ -277,7 +280,7 @@ void backlight_set(uint8_t level) {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
// Set the brightness
|
// Set the brightness
|
||||||
set_pwm(cie_lightness(rescale_limit_val(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS)));
|
set_pwm(cie_lightness(rescale_limit_val(ICRx * (uint32_t)level / BACKLIGHT_LEVELS)));
|
||||||
}
|
}
|
||||||
|
|
||||||
void backlight_task(void) {}
|
void backlight_task(void) {}
|
||||||
|
@ -292,6 +295,11 @@ void backlight_task(void) {}
|
||||||
static uint8_t breathing_halt = BREATHING_NO_HALT;
|
static uint8_t breathing_halt = BREATHING_NO_HALT;
|
||||||
static uint16_t breathing_counter = 0;
|
static uint16_t breathing_counter = 0;
|
||||||
|
|
||||||
|
static uint8_t breath_scale_counter = 1;
|
||||||
|
/* Run the breathing loop at ~120Hz*/
|
||||||
|
const uint8_t breathing_ISR_frequency = 120;
|
||||||
|
static uint16_t breathing_freq_scale_factor = 2;
|
||||||
|
|
||||||
# ifdef BACKLIGHT_PWM_TIMER
|
# ifdef BACKLIGHT_PWM_TIMER
|
||||||
static bool breathing = false;
|
static bool breathing = false;
|
||||||
|
|
||||||
|
@ -325,7 +333,7 @@ bool is_breathing(void) { return !!(TIMSKx & _BV(TOIEx)); }
|
||||||
} while (0)
|
} while (0)
|
||||||
# define breathing_max() \
|
# define breathing_max() \
|
||||||
do { \
|
do { \
|
||||||
breathing_counter = get_breathing_period() * 244 / 2; \
|
breathing_counter = breathing_period * breathing_ISR_frequency / 2; \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
void breathing_enable(void) {
|
void breathing_enable(void) {
|
||||||
|
@ -369,21 +377,33 @@ void breathing_task(void)
|
||||||
# else
|
# else
|
||||||
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
|
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
|
||||||
* about 244 times per second.
|
* about 244 times per second.
|
||||||
|
*
|
||||||
|
* The following ISR runs at F_CPU/ISRx. With a 16MHz clock and default pwm resolution, that means 244Hz
|
||||||
*/
|
*/
|
||||||
ISR(TIMERx_OVF_vect)
|
ISR(TIMERx_OVF_vect)
|
||||||
# endif
|
# endif
|
||||||
{
|
{
|
||||||
uint8_t breathing_period = get_breathing_period();
|
|
||||||
uint16_t interval = (uint16_t)breathing_period * 244 / BREATHING_STEPS;
|
// Only run this ISR at ~120 Hz
|
||||||
|
if(breath_scale_counter++ == breathing_freq_scale_factor)
|
||||||
|
{
|
||||||
|
breath_scale_counter = 1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
uint16_t interval = (uint16_t)breathing_period * breathing_ISR_frequency / BREATHING_STEPS;
|
||||||
// resetting after one period to prevent ugly reset at overflow.
|
// resetting after one period to prevent ugly reset at overflow.
|
||||||
breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
|
breathing_counter = (breathing_counter + 1) % (breathing_period * breathing_ISR_frequency);
|
||||||
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
|
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
|
||||||
|
|
||||||
if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) {
|
if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) {
|
||||||
breathing_interrupt_disable();
|
breathing_interrupt_disable();
|
||||||
}
|
}
|
||||||
|
|
||||||
set_pwm(cie_lightness(rescale_limit_val(scale_backlight((uint16_t)pgm_read_byte(&breathing_table[index]) * 0x0101U))));
|
// Set PWM to a brightnessvalue scaled to the configured resolution
|
||||||
|
set_pwm(cie_lightness(rescale_limit_val(scale_backlight((uint16_t)pgm_read_byte(&breathing_table[index]) * ICRx / 255))));
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // BACKLIGHT_BREATHING
|
#endif // BACKLIGHT_BREATHING
|
||||||
|
@ -413,16 +433,23 @@ void backlight_init_ports(void) {
|
||||||
"In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
|
"In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
|
||||||
"In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
|
"In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
|
||||||
*/
|
*/
|
||||||
# if BACKLIGHT_ON_STATE == 1
|
TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
|
||||||
TCCRxA = _BV(COMxx1) | _BV(WGM11);
|
TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
|
||||||
# else
|
|
||||||
TCCRxA = _BV(COMxx1) | _BV(COMxx0) | _BV(WGM11);
|
|
||||||
# endif
|
# endif
|
||||||
|
|
||||||
TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10);
|
# ifdef BACKLIGHT_CUSTOM_RESOLUTION
|
||||||
#endif
|
# if (BACKLIGHT_CUSTOM_RESOLUTION > 0xFFFF || BACKLIGHT_CUSTOM_RESOLUTION < 1)
|
||||||
// Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
|
# error "This out of range of the timer capabilities"
|
||||||
|
# elif (BACKLIGHT_CUSTOM_RESOLUTION < 0xFF)
|
||||||
|
# warning "Resolution lower than 0xFF isn't recommended"
|
||||||
|
# endif
|
||||||
|
# ifdef BACKLIGHT_BREATHING
|
||||||
|
breathing_freq_scale_factor = F_CPU / BACKLIGHT_CUSTOM_RESOLUTION / 120;
|
||||||
|
# endif
|
||||||
|
ICRx = BACKLIGHT_CUSTOM_RESOLUTION;
|
||||||
|
# else
|
||||||
ICRx = TIMER_TOP;
|
ICRx = TIMER_TOP;
|
||||||
|
# endif
|
||||||
|
|
||||||
backlight_init();
|
backlight_init();
|
||||||
#ifdef BACKLIGHT_BREATHING
|
#ifdef BACKLIGHT_BREATHING
|
||||||
|
|
Loading…
Reference in a new issue