qmk_sweep_skeletyl/quantum/quantum.c

1044 lines
36 KiB
C

/* Copyright 2016-2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
#if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
# include "rgb.h"
#endif
#ifdef PROTOCOL_LUFA
# include "outputselect.h"
#endif
#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
extern backlight_config_t backlight_config;
#endif
#ifdef FAUXCLICKY_ENABLE
# include "fauxclicky.h"
#endif
#ifdef API_ENABLE
# include "api.h"
#endif
#ifdef MIDI_ENABLE
# include "process_midi.h"
#endif
#ifdef VELOCIKEY_ENABLE
# include "velocikey.h"
#endif
#ifdef HAPTIC_ENABLE
# include "haptic.h"
#endif
#ifdef ENCODER_ENABLE
# include "encoder.h"
#endif
#ifdef AUDIO_ENABLE
# ifndef GOODBYE_SONG
# define GOODBYE_SONG SONG(GOODBYE_SOUND)
# endif
# ifndef AG_NORM_SONG
# define AG_NORM_SONG SONG(AG_NORM_SOUND)
# endif
# ifndef AG_SWAP_SONG
# define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
# endif
# ifndef CG_NORM_SONG
# define CG_NORM_SONG SONG(AG_NORM_SOUND)
# endif
# ifndef CG_SWAP_SONG
# define CG_SWAP_SONG SONG(AG_SWAP_SOUND)
# endif
float goodbye_song[][2] = GOODBYE_SONG;
float ag_norm_song[][2] = AG_NORM_SONG;
float ag_swap_song[][2] = AG_SWAP_SONG;
float cg_norm_song[][2] = CG_NORM_SONG;
float cg_swap_song[][2] = CG_SWAP_SONG;
# ifdef DEFAULT_LAYER_SONGS
float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
# endif
#endif
static void do_code16(uint16_t code, void (*f)(uint8_t)) {
switch (code) {
case QK_MODS ... QK_MODS_MAX:
break;
default:
return;
}
uint8_t mods_to_send = 0;
if (code & QK_RMODS_MIN) { // Right mod flag is set
if (code & QK_LCTL) mods_to_send |= MOD_BIT(KC_RCTL);
if (code & QK_LSFT) mods_to_send |= MOD_BIT(KC_RSFT);
if (code & QK_LALT) mods_to_send |= MOD_BIT(KC_RALT);
if (code & QK_LGUI) mods_to_send |= MOD_BIT(KC_RGUI);
} else {
if (code & QK_LCTL) mods_to_send |= MOD_BIT(KC_LCTL);
if (code & QK_LSFT) mods_to_send |= MOD_BIT(KC_LSFT);
if (code & QK_LALT) mods_to_send |= MOD_BIT(KC_LALT);
if (code & QK_LGUI) mods_to_send |= MOD_BIT(KC_LGUI);
}
f(mods_to_send);
}
void register_code16(uint16_t code) {
if (IS_MOD(code) || code == KC_NO) {
do_code16(code, register_mods);
} else {
do_code16(code, register_weak_mods);
}
register_code(code);
}
void unregister_code16(uint16_t code) {
unregister_code(code);
if (IS_MOD(code) || code == KC_NO) {
do_code16(code, unregister_mods);
} else {
do_code16(code, unregister_weak_mods);
}
}
void tap_code16(uint16_t code) {
register_code16(code);
#if TAP_CODE_DELAY > 0
wait_ms(TAP_CODE_DELAY);
#endif
unregister_code16(code);
}
__attribute__((weak)) bool process_action_kb(keyrecord_t *record) { return true; }
__attribute__((weak)) bool process_record_kb(uint16_t keycode, keyrecord_t *record) { return process_record_user(keycode, record); }
__attribute__((weak)) bool process_record_user(uint16_t keycode, keyrecord_t *record) { return true; }
void reset_keyboard(void) {
clear_keyboard();
#if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
process_midi_all_notes_off();
#endif
#ifdef AUDIO_ENABLE
# ifndef NO_MUSIC_MODE
music_all_notes_off();
# endif
uint16_t timer_start = timer_read();
PLAY_SONG(goodbye_song);
shutdown_user();
while (timer_elapsed(timer_start) < 250) wait_ms(1);
stop_all_notes();
#else
shutdown_user();
wait_ms(250);
#endif
#ifdef HAPTIC_ENABLE
haptic_shutdown();
#endif
// this is also done later in bootloader.c - not sure if it's neccesary here
#ifdef BOOTLOADER_CATERINA
*(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
#endif
bootloader_jump();
}
/* Convert record into usable keycode via the contained event. */
uint16_t get_record_keycode(keyrecord_t *record) { return get_event_keycode(record->event); }
/* Convert event into usable keycode. Checks the layer cache to ensure that it
* retains the correct keycode after a layer change, if the key is still pressed.
*/
uint16_t get_event_keycode(keyevent_t event) {
#if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
/* TODO: Use store_or_get_action() or a similar function. */
if (!disable_action_cache) {
uint8_t layer;
if (event.pressed) {
layer = layer_switch_get_layer(event.key);
update_source_layers_cache(event.key, layer);
} else {
layer = read_source_layers_cache(event.key);
}
return keymap_key_to_keycode(layer, event.key);
} else
#endif
return keymap_key_to_keycode(layer_switch_get_layer(event.key), event.key);
}
/* Main keycode processing function. Hands off handling to other functions,
* then processes internal Quantum keycodes, then processes ACTIONs.
*/
bool process_record_quantum(keyrecord_t *record) {
uint16_t keycode = get_record_keycode(record);
// This is how you use actions here
// if (keycode == KC_LEAD) {
// action_t action;
// action.code = ACTION_DEFAULT_LAYER_SET(0);
// process_action(record, action);
// return false;
// }
#ifdef VELOCIKEY_ENABLE
if (velocikey_enabled() && record->event.pressed) {
velocikey_accelerate();
}
#endif
#ifdef TAP_DANCE_ENABLE
preprocess_tap_dance(keycode, record);
#endif
if (!(
#if defined(KEY_LOCK_ENABLE)
// Must run first to be able to mask key_up events.
process_key_lock(&keycode, record) &&
#endif
#if defined(DYNAMIC_MACRO_ENABLE) && !defined(DYNAMIC_MACRO_USER_CALL)
// Must run asap to ensure all keypresses are recorded.
process_dynamic_macro(keycode, record) &&
#endif
#if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
process_clicky(keycode, record) &&
#endif // AUDIO_CLICKY
#ifdef HAPTIC_ENABLE
process_haptic(keycode, record) &&
#endif // HAPTIC_ENABLE
#if defined(RGB_MATRIX_ENABLE)
process_rgb_matrix(keycode, record) &&
#endif
process_record_kb(keycode, record) &&
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
process_midi(keycode, record) &&
#endif
#ifdef AUDIO_ENABLE
process_audio(keycode, record) &&
#endif
#ifdef STENO_ENABLE
process_steno(keycode, record) &&
#endif
#if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
process_music(keycode, record) &&
#endif
#ifdef TAP_DANCE_ENABLE
process_tap_dance(keycode, record) &&
#endif
#if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
process_unicode_common(keycode, record) &&
#endif
#ifdef LEADER_ENABLE
process_leader(keycode, record) &&
#endif
#ifdef COMBO_ENABLE
process_combo(keycode, record) &&
#endif
#ifdef PRINTING_ENABLE
process_printer(keycode, record) &&
#endif
#ifdef AUTO_SHIFT_ENABLE
process_auto_shift(keycode, record) &&
#endif
#ifdef TERMINAL_ENABLE
process_terminal(keycode, record) &&
#endif
#ifdef SPACE_CADET_ENABLE
process_space_cadet(keycode, record) &&
#endif
true)) {
return false;
}
if (record->event.pressed) {
switch (keycode) {
case RESET:
reset_keyboard();
return false;
#ifndef NO_DEBUG
case DEBUG:
debug_enable ^= 1;
if (debug_enable) {
print("DEBUG: enabled.\n");
} else {
print("DEBUG: disabled.\n");
}
#endif
return false;
case EEPROM_RESET:
eeconfig_init();
return false;
#ifdef FAUXCLICKY_ENABLE
case FC_TOG:
FAUXCLICKY_TOGGLE;
return false;
case FC_ON:
FAUXCLICKY_ON;
return false;
case FC_OFF:
FAUXCLICKY_OFF;
return false;
#endif
#ifdef VELOCIKEY_ENABLE
case VLK_TOG:
velocikey_toggle();
return false;
#endif
#ifdef BLUETOOTH_ENABLE
case OUT_AUTO:
set_output(OUTPUT_AUTO);
return false;
case OUT_USB:
set_output(OUTPUT_USB);
return false;
case OUT_BT:
set_output(OUTPUT_BLUETOOTH);
return false;
#endif
}
}
#if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
# ifndef SPLIT_KEYBOARD
if (record->event.pressed) {
# else
// Split keyboards need to trigger on key-up for edge-case issue
if (!record->event.pressed) {
# endif
uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT));
switch (keycode) {
case RGB_TOG:
rgblight_toggle();
return false;
case RGB_MODE_FORWARD:
if (shifted) {
rgblight_step_reverse();
} else {
rgblight_step();
}
return false;
case RGB_MODE_REVERSE:
if (shifted) {
rgblight_step();
} else {
rgblight_step_reverse();
}
return false;
case RGB_HUI:
rgblight_increase_hue();
return false;
case RGB_HUD:
rgblight_decrease_hue();
return false;
case RGB_SAI:
rgblight_increase_sat();
return false;
case RGB_SAD:
rgblight_decrease_sat();
return false;
case RGB_VAI:
rgblight_increase_val();
return false;
case RGB_VAD:
rgblight_decrease_val();
return false;
case RGB_SPI:
rgblight_increase_speed();
return false;
case RGB_SPD:
rgblight_decrease_speed();
return false;
case RGB_MODE_PLAIN:
rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
return false;
case RGB_MODE_BREATHE:
# ifdef RGBLIGHT_EFFECT_BREATHING
if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
rgblight_step();
} else {
rgblight_mode(RGBLIGHT_MODE_BREATHING);
}
# endif
return false;
case RGB_MODE_RAINBOW:
# ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
rgblight_step();
} else {
rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
}
# endif
case RGB_MODE_SWIRL:
# ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
rgblight_step();
} else {
rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
}
# endif
return false;
case RGB_MODE_SNAKE:
# ifdef RGBLIGHT_EFFECT_SNAKE
if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
rgblight_step();
} else {
rgblight_mode(RGBLIGHT_MODE_SNAKE);
}
# endif
return false;
case RGB_MODE_KNIGHT:
# ifdef RGBLIGHT_EFFECT_KNIGHT
if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
rgblight_step();
} else {
rgblight_mode(RGBLIGHT_MODE_KNIGHT);
}
# endif
return false;
case RGB_MODE_XMAS:
# ifdef RGBLIGHT_EFFECT_CHRISTMAS
rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
# endif
return false;
case RGB_MODE_GRADIENT:
# ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
rgblight_step();
} else {
rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
}
# endif
return false;
case RGB_MODE_RGBTEST:
# ifdef RGBLIGHT_EFFECT_RGB_TEST
rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
# endif
return false;
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
case BL_BRTG:
backlight_toggle_breathing();
return false;
#endif
}
}
#endif
// keycodes that depend on both pressed and non-pressed state
switch (keycode) {
case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_ALT_GUI:
case MAGIC_SWAP_LCTL_LGUI ... MAGIC_EE_HANDS_RIGHT:
if (record->event.pressed) {
// MAGIC actions (BOOTMAGIC without the boot)
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
/* keymap config */
keymap_config.raw = eeconfig_read_keymap();
switch (keycode) {
case MAGIC_SWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = true;
break;
case MAGIC_CAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = true;
break;
case MAGIC_SWAP_LALT_LGUI:
keymap_config.swap_lalt_lgui = true;
break;
case MAGIC_SWAP_RALT_RGUI:
keymap_config.swap_ralt_rgui = true;
break;
case MAGIC_SWAP_LCTL_LGUI:
keymap_config.swap_lctl_lgui = true;
break;
case MAGIC_SWAP_RCTL_RGUI:
keymap_config.swap_rctl_rgui = true;
break;
case MAGIC_NO_GUI:
keymap_config.no_gui = true;
break;
case MAGIC_SWAP_GRAVE_ESC:
keymap_config.swap_grave_esc = true;
break;
case MAGIC_SWAP_BACKSLASH_BACKSPACE:
keymap_config.swap_backslash_backspace = true;
break;
case MAGIC_HOST_NKRO:
clear_keyboard(); // clear first buffer to prevent stuck keys
keymap_config.nkro = true;
break;
case MAGIC_SWAP_ALT_GUI:
keymap_config.swap_lalt_lgui = keymap_config.swap_ralt_rgui = true;
#ifdef AUDIO_ENABLE
PLAY_SONG(ag_swap_song);
#endif
break;
case MAGIC_SWAP_CTL_GUI:
keymap_config.swap_lctl_lgui = keymap_config.swap_rctl_rgui = true;
#ifdef AUDIO_ENABLE
PLAY_SONG(cg_swap_song);
#endif
break;
case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = false;
break;
case MAGIC_UNCAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = false;
break;
case MAGIC_UNSWAP_LALT_LGUI:
keymap_config.swap_lalt_lgui = false;
break;
case MAGIC_UNSWAP_RALT_RGUI:
keymap_config.swap_ralt_rgui = false;
break;
case MAGIC_UNSWAP_LCTL_LGUI:
keymap_config.swap_lctl_lgui = false;
break;
case MAGIC_UNSWAP_RCTL_RGUI:
keymap_config.swap_rctl_rgui = false;
break;
case MAGIC_UNNO_GUI:
keymap_config.no_gui = false;
break;
case MAGIC_UNSWAP_GRAVE_ESC:
keymap_config.swap_grave_esc = false;
break;
case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
keymap_config.swap_backslash_backspace = false;
break;
case MAGIC_UNHOST_NKRO:
clear_keyboard(); // clear first buffer to prevent stuck keys
keymap_config.nkro = false;
break;
case MAGIC_UNSWAP_ALT_GUI:
keymap_config.swap_lalt_lgui = keymap_config.swap_ralt_rgui = false;
#ifdef AUDIO_ENABLE
PLAY_SONG(ag_norm_song);
#endif
break;
case MAGIC_UNSWAP_CTL_GUI:
keymap_config.swap_lctl_lgui = keymap_config.swap_rctl_rgui = false;
#ifdef AUDIO_ENABLE
PLAY_SONG(cg_norm_song);
#endif
break;
case MAGIC_TOGGLE_ALT_GUI:
keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
keymap_config.swap_ralt_rgui = keymap_config.swap_lalt_lgui;
#ifdef AUDIO_ENABLE
if (keymap_config.swap_ralt_rgui) {
PLAY_SONG(ag_swap_song);
} else {
PLAY_SONG(ag_norm_song);
}
#endif
break;
case MAGIC_TOGGLE_CTL_GUI:
keymap_config.swap_lctl_lgui = !keymap_config.swap_lctl_lgui;
keymap_config.swap_rctl_rgui = keymap_config.swap_lctl_lgui;
#ifdef AUDIO_ENABLE
if (keymap_config.swap_rctl_rgui) {
PLAY_SONG(cg_swap_song);
} else {
PLAY_SONG(cg_norm_song);
}
#endif
break;
case MAGIC_TOGGLE_NKRO:
clear_keyboard(); // clear first buffer to prevent stuck keys
keymap_config.nkro = !keymap_config.nkro;
break;
case MAGIC_EE_HANDS_LEFT:
eeconfig_update_handedness(true);
break;
case MAGIC_EE_HANDS_RIGHT:
eeconfig_update_handedness(false);
break;
default:
break;
}
eeconfig_update_keymap(keymap_config.raw);
clear_keyboard(); // clear to prevent stuck keys
return false;
}
break;
case GRAVE_ESC: {
/* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
* Used to ensure that the correct keycode is released if the key is released.
*/
static bool grave_esc_was_shifted = false;
uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT) | MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI)));
#ifdef GRAVE_ESC_ALT_OVERRIDE
// if ALT is pressed, ESC is always sent
// this is handy for the cmd+opt+esc shortcut on macOS, among other things.
if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
shifted = 0;
}
#endif
#ifdef GRAVE_ESC_CTRL_OVERRIDE
// if CTRL is pressed, ESC is always sent
// this is handy for the ctrl+shift+esc shortcut on windows, among other things.
if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
shifted = 0;
}
#endif
#ifdef GRAVE_ESC_GUI_OVERRIDE
// if GUI is pressed, ESC is always sent
if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
shifted = 0;
}
#endif
#ifdef GRAVE_ESC_SHIFT_OVERRIDE
// if SHIFT is pressed, ESC is always sent
if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
shifted = 0;
}
#endif
if (record->event.pressed) {
grave_esc_was_shifted = shifted;
add_key(shifted ? KC_GRAVE : KC_ESCAPE);
} else {
del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
}
send_keyboard_report();
return false;
}
}
return process_action_kb(record);
}
__attribute__((weak)) const bool ascii_to_shift_lut[128] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0};
__attribute__((weak)) const bool ascii_to_altgr_lut[128] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__attribute__((weak)) const uint8_t ascii_to_keycode_lut[128] PROGMEM = {// NUL SOH STX ETX EOT ENQ ACK BEL
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// BS TAB LF VT FF CR SO SI
KC_BSPC, KC_TAB, KC_ENT, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// DLE DC1 DC2 DC3 DC4 NAK SYN ETB
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// CAN EM SUB ESC FS GS RS US
XXXXXXX, XXXXXXX, XXXXXXX, KC_ESC, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
// ! " # $ % & '
KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
// ( ) * + , - . /
KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
// 0 1 2 3 4 5 6 7
KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
// 8 9 : ; < = > ?
KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
// @ A B C D E F G
KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
// H I J K L M N O
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
// P Q R S T U V W
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
// X Y Z [ \ ] ^ _
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
// ` a b c d e f g
KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
// h i j k l m n o
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
// p q r s t u v w
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
// x y z { | } ~ DEL
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL};
void send_string(const char *str) { send_string_with_delay(str, 0); }
void send_string_P(const char *str) { send_string_with_delay_P(str, 0); }
void send_string_with_delay(const char *str, uint8_t interval) {
while (1) {
char ascii_code = *str;
if (!ascii_code) break;
if (ascii_code == SS_TAP_CODE) {
// tap
uint8_t keycode = *(++str);
register_code(keycode);
unregister_code(keycode);
} else if (ascii_code == SS_DOWN_CODE) {
// down
uint8_t keycode = *(++str);
register_code(keycode);
} else if (ascii_code == SS_UP_CODE) {
// up
uint8_t keycode = *(++str);
unregister_code(keycode);
} else {
send_char(ascii_code);
}
++str;
// interval
{
uint8_t ms = interval;
while (ms--) wait_ms(1);
}
}
}
void send_string_with_delay_P(const char *str, uint8_t interval) {
while (1) {
char ascii_code = pgm_read_byte(str);
if (!ascii_code) break;
if (ascii_code == SS_TAP_CODE) {
// tap
uint8_t keycode = pgm_read_byte(++str);
register_code(keycode);
unregister_code(keycode);
} else if (ascii_code == SS_DOWN_CODE) {
// down
uint8_t keycode = pgm_read_byte(++str);
register_code(keycode);
} else if (ascii_code == SS_UP_CODE) {
// up
uint8_t keycode = pgm_read_byte(++str);
unregister_code(keycode);
} else {
send_char(ascii_code);
}
++str;
// interval
{
uint8_t ms = interval;
while (ms--) wait_ms(1);
}
}
}
void send_char(char ascii_code) {
uint8_t keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
bool is_shifted = pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code]);
bool is_altgred = pgm_read_byte(&ascii_to_altgr_lut[(uint8_t)ascii_code]);
if (is_shifted) {
register_code(KC_LSFT);
}
if (is_altgred) {
register_code(KC_RALT);
}
tap_code(keycode);
if (is_altgred) {
unregister_code(KC_RALT);
}
if (is_shifted) {
unregister_code(KC_LSFT);
}
}
void set_single_persistent_default_layer(uint8_t default_layer) {
#if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
PLAY_SONG(default_layer_songs[default_layer]);
#endif
eeconfig_update_default_layer(1U << default_layer);
default_layer_set(1U << default_layer);
}
layer_state_t update_tri_layer_state(layer_state_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
layer_state_t mask12 = (1UL << layer1) | (1UL << layer2);
layer_state_t mask3 = 1UL << layer3;
return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
}
void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3)); }
void tap_random_base64(void) {
#if defined(__AVR_ATmega32U4__)
uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
#else
uint8_t key = rand() % 64;
#endif
switch (key) {
case 0 ... 25:
register_code(KC_LSFT);
register_code(key + KC_A);
unregister_code(key + KC_A);
unregister_code(KC_LSFT);
break;
case 26 ... 51:
register_code(key - 26 + KC_A);
unregister_code(key - 26 + KC_A);
break;
case 52:
register_code(KC_0);
unregister_code(KC_0);
break;
case 53 ... 61:
register_code(key - 53 + KC_1);
unregister_code(key - 53 + KC_1);
break;
case 62:
register_code(KC_LSFT);
register_code(KC_EQL);
unregister_code(KC_EQL);
unregister_code(KC_LSFT);
break;
case 63:
register_code(KC_SLSH);
unregister_code(KC_SLSH);
break;
}
}
__attribute__((weak)) void bootmagic_lite(void) {
// The lite version of TMK's bootmagic based on Wilba.
// 100% less potential for accidentally making the
// keyboard do stupid things.
// We need multiple scans because debouncing can't be turned off.
matrix_scan();
#if defined(DEBOUNCING_DELAY) && DEBOUNCING_DELAY > 0
wait_ms(DEBOUNCING_DELAY * 2);
#elif defined(DEBOUNCE) && DEBOUNCE > 0
wait_ms(DEBOUNCE * 2);
#else
wait_ms(30);
#endif
matrix_scan();
// If the Esc and space bar are held down on power up,
// reset the EEPROM valid state and jump to bootloader.
// Assumes Esc is at [0,0].
// This isn't very generalized, but we need something that doesn't
// rely on user's keymaps in firmware or EEPROM.
if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
eeconfig_disable();
// Jump to bootloader.
bootloader_jump();
}
}
void matrix_init_quantum() {
#ifdef BOOTMAGIC_LITE
bootmagic_lite();
#endif
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
#ifdef BACKLIGHT_ENABLE
# ifdef LED_MATRIX_ENABLE
led_matrix_init();
# else
backlight_init_ports();
# endif
#endif
#ifdef AUDIO_ENABLE
audio_init();
#endif
#ifdef RGB_MATRIX_ENABLE
rgb_matrix_init();
#endif
#ifdef ENCODER_ENABLE
encoder_init();
#endif
#if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
unicode_input_mode_init();
#endif
#ifdef HAPTIC_ENABLE
haptic_init();
#endif
#ifdef OUTPUT_AUTO_ENABLE
set_output(OUTPUT_AUTO);
#endif
#ifdef DIP_SWITCH_ENABLE
dip_switch_init();
#endif
matrix_init_kb();
}
void matrix_scan_quantum() {
#if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
matrix_scan_music();
#endif
#ifdef TAP_DANCE_ENABLE
matrix_scan_tap_dance();
#endif
#ifdef COMBO_ENABLE
matrix_scan_combo();
#endif
#if defined(BACKLIGHT_ENABLE)
# if defined(LED_MATRIX_ENABLE)
led_matrix_task();
# elif defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS)
backlight_task();
# endif
#endif
#ifdef RGB_MATRIX_ENABLE
rgb_matrix_task();
#endif
#ifdef ENCODER_ENABLE
encoder_read();
#endif
#ifdef HAPTIC_ENABLE
haptic_task();
#endif
#ifdef DIP_SWITCH_ENABLE
dip_switch_read(false);
#endif
matrix_scan_kb();
}
#ifdef HD44780_ENABLED
# include "hd44780.h"
#endif
// Functions for spitting out values
//
void send_dword(uint32_t number) { // this might not actually work
uint16_t word = (number >> 16);
send_word(word);
send_word(number & 0xFFFFUL);
}
void send_word(uint16_t number) {
uint8_t byte = number >> 8;
send_byte(byte);
send_byte(number & 0xFF);
}
void send_byte(uint8_t number) {
uint8_t nibble = number >> 4;
send_nibble(nibble);
send_nibble(number & 0xF);
}
void send_nibble(uint8_t number) {
switch (number) {
case 0:
register_code(KC_0);
unregister_code(KC_0);
break;
case 1 ... 9:
register_code(KC_1 + (number - 1));
unregister_code(KC_1 + (number - 1));
break;
case 0xA ... 0xF:
register_code(KC_A + (number - 0xA));
unregister_code(KC_A + (number - 0xA));
break;
}
}
__attribute__((weak)) uint16_t hex_to_keycode(uint8_t hex) {
hex = hex & 0xF;
if (hex == 0x0) {
return KC_0;
} else if (hex < 0xA) {
return KC_1 + (hex - 0x1);
} else {
return KC_A + (hex - 0xA);
}
}
void api_send_unicode(uint32_t unicode) {
#ifdef API_ENABLE
uint8_t chunk[4];
dword_to_bytes(unicode, chunk);
MT_SEND_DATA(DT_UNICODE, chunk, 5);
#endif
}
/** \brief Lock LED set callback - keymap/user level
*
* \deprecated Use led_update_user() instead.
*/
__attribute__((weak)) void led_set_user(uint8_t usb_led) {}
/** \brief Lock LED set callback - keyboard level
*
* \deprecated Use led_update_kb() instead.
*/
__attribute__((weak)) void led_set_kb(uint8_t usb_led) { led_set_user(usb_led); }
/** \brief Lock LED update callback - keymap/user level
*
* \return True if led_update_kb() should run its own code, false otherwise.
*/
__attribute__((weak)) bool led_update_user(led_t led_state) { return true; }
/** \brief Lock LED update callback - keyboard level
*
* \return Ignored for now.
*/
__attribute__((weak)) bool led_update_kb(led_t led_state) { return led_update_user(led_state); }
__attribute__((weak)) void led_init_ports(void) {}
__attribute__((weak)) void led_set(uint8_t usb_led) {
#if defined(BACKLIGHT_CAPS_LOCK) && defined(BACKLIGHT_ENABLE)
// Use backlight as Caps Lock indicator
uint8_t bl_toggle_lvl = 0;
if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK) && !backlight_config.enable) {
// Turning Caps Lock ON and backlight is disabled in config
// Toggling backlight to the brightest level
bl_toggle_lvl = BACKLIGHT_LEVELS;
} else if (IS_LED_OFF(usb_led, USB_LED_CAPS_LOCK) && backlight_config.enable) {
// Turning Caps Lock OFF and backlight is enabled in config
// Toggling backlight and restoring config level
bl_toggle_lvl = backlight_config.level;
}
// Set level without modify backlight_config to keep ability to restore state
backlight_set(bl_toggle_lvl);
#endif
led_set_kb(usb_led);
led_update_kb((led_t)usb_led);
}
//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// different events such as startup and bootloader jump
__attribute__((weak)) void startup_user() {}
__attribute__((weak)) void shutdown_user() {}
//------------------------------------------------------------------------------