qmk_sweep_skeletyl/quantum/process_keycode/process_unicode_common.c
Jeff Epler 9632360caa
Use a macro to compute the size of arrays at compile time (#18044)
* Add ARRAY_SIZE and CEILING utility macros

* Apply a coccinelle patch to use ARRAY_SIZE

* fix up some straggling items

* Fix 'make test:secure'

* Enhance ARRAY_SIZE macro to reject acting on pointers

The previous definition would not produce a diagnostic for
```
int *p;
size_t num_elem = ARRAY_SIZE(p)
```
but the new one will.

* explicitly get definition of ARRAY_SIZE

* Convert to ARRAY_SIZE when const is involved

The following spatch finds additional instances where the array is
const and the division is by the size of the type, not the size of
the first element:
```
@ rule5a using "empty.iso" @
type T;
const T[] E;
@@

- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)

@ rule6a using "empty.iso" @
type T;
const T[] E;
@@

- sizeof(E)/sizeof(T)
+ ARRAY_SIZE(E)
```

* New instances of ARRAY_SIZE added since initial spatch run

* Use `ARRAY_SIZE` in docs (found by grep)

* Manually use ARRAY_SIZE

hs_set is expected to be the same size as uint16_t, though it's made
of two 8-bit integers

* Just like char, sizeof(uint8_t) is guaranteed to be 1

This is at least true on any plausible system where qmk is actually used.

Per my understanding it's universally true, assuming that uint8_t exists:
https://stackoverflow.com/questions/48655310/can-i-assume-that-sizeofuint8-t-1

* Run qmk-format on core C files touched in this branch

Co-authored-by: Stefan Kerkmann <karlk90@pm.me>
2022-08-30 10:20:04 +02:00

350 lines
10 KiB
C

/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "process_unicode_common.h"
#include "eeprom.h"
#include "utf8.h"
unicode_config_t unicode_config;
uint8_t unicode_saved_mods;
bool unicode_saved_caps_lock;
bool unicode_saved_num_lock;
#if UNICODE_SELECTED_MODES != -1
static uint8_t selected[] = {UNICODE_SELECTED_MODES};
static int8_t selected_count = ARRAY_SIZE(selected);
static int8_t selected_index;
#endif
void unicode_input_mode_init(void) {
unicode_config.raw = eeprom_read_byte(EECONFIG_UNICODEMODE);
#if UNICODE_SELECTED_MODES != -1
# if UNICODE_CYCLE_PERSIST
// Find input_mode in selected modes
int8_t i;
for (i = 0; i < selected_count; i++) {
if (selected[i] == unicode_config.input_mode) {
selected_index = i;
break;
}
}
if (i == selected_count) {
// Not found: input_mode isn't selected, change to one that is
unicode_config.input_mode = selected[selected_index = 0];
}
# else
// Always change to the first selected input mode
unicode_config.input_mode = selected[selected_index = 0];
# endif
#endif
dprintf("Unicode input mode init to: %u\n", unicode_config.input_mode);
}
uint8_t get_unicode_input_mode(void) {
return unicode_config.input_mode;
}
void set_unicode_input_mode(uint8_t mode) {
unicode_config.input_mode = mode;
persist_unicode_input_mode();
dprintf("Unicode input mode set to: %u\n", unicode_config.input_mode);
}
void cycle_unicode_input_mode(int8_t offset) {
#if UNICODE_SELECTED_MODES != -1
selected_index = (selected_index + offset) % selected_count;
if (selected_index < 0) {
selected_index += selected_count;
}
unicode_config.input_mode = selected[selected_index];
# if UNICODE_CYCLE_PERSIST
persist_unicode_input_mode();
# endif
dprintf("Unicode input mode cycle to: %u\n", unicode_config.input_mode);
#endif
}
void persist_unicode_input_mode(void) {
eeprom_update_byte(EECONFIG_UNICODEMODE, unicode_config.input_mode);
}
__attribute__((weak)) void unicode_input_start(void) {
unicode_saved_caps_lock = host_keyboard_led_state().caps_lock;
unicode_saved_num_lock = host_keyboard_led_state().num_lock;
// Note the order matters here!
// Need to do this before we mess around with the mods, or else
// UNICODE_KEY_LNX (which is usually Ctrl-Shift-U) might not work
// correctly in the shifted case.
if (unicode_config.input_mode == UC_LNX && unicode_saved_caps_lock) {
tap_code(KC_CAPS_LOCK);
}
unicode_saved_mods = get_mods(); // Save current mods
clear_mods(); // Unregister mods to start from a clean state
clear_weak_mods();
switch (unicode_config.input_mode) {
case UC_MAC:
register_code(UNICODE_KEY_MAC);
break;
case UC_LNX:
tap_code16(UNICODE_KEY_LNX);
break;
case UC_WIN:
// For increased reliability, use numpad keys for inputting digits
if (!unicode_saved_num_lock) {
tap_code(KC_NUM_LOCK);
}
register_code(KC_LEFT_ALT);
wait_ms(UNICODE_TYPE_DELAY);
tap_code(KC_KP_PLUS);
break;
case UC_WINC:
tap_code(UNICODE_KEY_WINC);
tap_code(KC_U);
break;
case UC_EMACS:
// The usual way to type unicode in emacs is C-x-8 <RET> then the unicode number in hex
tap_code16(LCTL(KC_X));
tap_code16(KC_8);
tap_code16(KC_ENTER);
break;
}
wait_ms(UNICODE_TYPE_DELAY);
}
__attribute__((weak)) void unicode_input_finish(void) {
switch (unicode_config.input_mode) {
case UC_MAC:
unregister_code(UNICODE_KEY_MAC);
break;
case UC_LNX:
tap_code(KC_SPACE);
if (unicode_saved_caps_lock) {
tap_code(KC_CAPS_LOCK);
}
break;
case UC_WIN:
unregister_code(KC_LEFT_ALT);
if (!unicode_saved_num_lock) {
tap_code(KC_NUM_LOCK);
}
break;
case UC_WINC:
tap_code(KC_ENTER);
break;
case UC_EMACS:
tap_code16(KC_ENTER);
break;
}
set_mods(unicode_saved_mods); // Reregister previously set mods
}
__attribute__((weak)) void unicode_input_cancel(void) {
switch (unicode_config.input_mode) {
case UC_MAC:
unregister_code(UNICODE_KEY_MAC);
break;
case UC_LNX:
tap_code(KC_ESCAPE);
if (unicode_saved_caps_lock) {
tap_code(KC_CAPS_LOCK);
}
break;
case UC_WINC:
tap_code(KC_ESCAPE);
break;
case UC_WIN:
unregister_code(KC_LEFT_ALT);
if (!unicode_saved_num_lock) {
tap_code(KC_NUM_LOCK);
}
break;
case UC_EMACS:
tap_code16(LCTL(KC_G)); // C-g cancels
break;
}
set_mods(unicode_saved_mods); // Reregister previously set mods
}
// clang-format off
static void send_nibble_wrapper(uint8_t digit) {
if (unicode_config.input_mode == UC_WIN) {
uint8_t kc = digit < 10
? KC_KP_1 + (10 + digit - 1) % 10
: KC_A + (digit - 10);
tap_code(kc);
return;
}
send_nibble(digit);
}
// clang-format on
void register_hex(uint16_t hex) {
for (int i = 3; i >= 0; i--) {
uint8_t digit = ((hex >> (i * 4)) & 0xF);
send_nibble_wrapper(digit);
}
}
void register_hex32(uint32_t hex) {
bool onzerostart = true;
for (int i = 7; i >= 0; i--) {
if (i <= 3) {
onzerostart = false;
}
uint8_t digit = ((hex >> (i * 4)) & 0xF);
if (digit == 0) {
if (!onzerostart) {
send_nibble_wrapper(digit);
}
} else {
send_nibble_wrapper(digit);
onzerostart = false;
}
}
}
void register_unicode(uint32_t code_point) {
if (code_point > 0x10FFFF || (code_point > 0xFFFF && unicode_config.input_mode == UC_WIN)) {
// Code point out of range, do nothing
return;
}
unicode_input_start();
if (code_point > 0xFFFF && unicode_config.input_mode == UC_MAC) {
// Convert code point to UTF-16 surrogate pair on macOS
code_point -= 0x10000;
uint32_t lo = code_point & 0x3FF, hi = (code_point & 0xFFC00) >> 10;
register_hex32(hi + 0xD800);
register_hex32(lo + 0xDC00);
} else {
register_hex32(code_point);
}
unicode_input_finish();
}
void send_unicode_string(const char *str) {
if (!str) {
return;
}
while (*str) {
int32_t code_point = 0;
str = decode_utf8(str, &code_point);
if (code_point >= 0) {
register_unicode(code_point);
}
}
}
// clang-format off
static void audio_helper(void) {
#ifdef AUDIO_ENABLE
switch (get_unicode_input_mode()) {
# ifdef UNICODE_SONG_MAC
static float song_mac[][2] = UNICODE_SONG_MAC;
case UC_MAC:
PLAY_SONG(song_mac);
break;
# endif
# ifdef UNICODE_SONG_LNX
static float song_lnx[][2] = UNICODE_SONG_LNX;
case UC_LNX:
PLAY_SONG(song_lnx);
break;
# endif
# ifdef UNICODE_SONG_WIN
static float song_win[][2] = UNICODE_SONG_WIN;
case UC_WIN:
PLAY_SONG(song_win);
break;
# endif
# ifdef UNICODE_SONG_BSD
static float song_bsd[][2] = UNICODE_SONG_BSD;
case UC_BSD:
PLAY_SONG(song_bsd);
break;
# endif
# ifdef UNICODE_SONG_WINC
static float song_winc[][2] = UNICODE_SONG_WINC;
case UC_WINC:
PLAY_SONG(song_winc);
break;
# endif
}
#endif
}
// clang-format on
bool process_unicode_common(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
bool shifted = get_mods() & MOD_MASK_SHIFT;
switch (keycode) {
case UNICODE_MODE_FORWARD:
cycle_unicode_input_mode(shifted ? -1 : +1);
audio_helper();
break;
case UNICODE_MODE_REVERSE:
cycle_unicode_input_mode(shifted ? +1 : -1);
audio_helper();
break;
case UNICODE_MODE_MAC:
set_unicode_input_mode(UC_MAC);
audio_helper();
break;
case UNICODE_MODE_LNX:
set_unicode_input_mode(UC_LNX);
audio_helper();
break;
case UNICODE_MODE_WIN:
set_unicode_input_mode(UC_WIN);
audio_helper();
break;
case UNICODE_MODE_BSD:
set_unicode_input_mode(UC_BSD);
audio_helper();
break;
case UNICODE_MODE_WINC:
set_unicode_input_mode(UC_WINC);
audio_helper();
break;
case UNICODE_MODE_EMACS:
set_unicode_input_mode(UC_EMACS);
audio_helper();
break;
}
}
#if defined(UNICODE_ENABLE)
return process_unicode(keycode, record);
#elif defined(UNICODEMAP_ENABLE)
return process_unicodemap(keycode, record);
#elif defined(UCIS_ENABLE)
return process_ucis(keycode, record);
#else
return true;
#endif
}