improve random map generator, change algorithm to simplex noise

This commit is contained in:
IntelOrca 2015-02-13 03:29:40 +00:00
parent a66b29076b
commit e953fdc360
3 changed files with 215 additions and 16 deletions

View File

@ -145,6 +145,25 @@ static int get_object_from_object_selection(uint8 object_type, int y, uint8 *obj
static void sub_6D33E2();
static void editor_load_selected_objects();
static void window_editor_object_selection_select_default_objects()
{
int i;
rct_object_entry *entry;
if (RCT2_GLOBAL(0x00F433F7, uint16) == 0)
return;
entry = (rct_object_entry*)0x0098DAE5;
for (i = 0; i < 22; i++)
RCT2_CALLPROC_X(0x006AB54F, 0, 7, 0, 0, 0, 0, (int)entry);
// Add snow and ice theme
unsigned char myEntry[16] = {
0x87, 0x8F, 0x18, 0x0A, 0x53, 0x43, 0x47, 0x53, 0x4E, 0x4F, 0x57, 0x20, 0xBF, 0x74, 0x51, 0x25
};
RCT2_CALLPROC_X(0x006AB54F, 0, 7, 0, 0, 0, 0, (int)myEntry);
}
/**
*
* rct2: 0x006AA64E
@ -160,6 +179,10 @@ void window_editor_object_selection_open()
RCT2_CALLPROC_EBPSAFE(0x006AB211);
RCT2_CALLPROC_EBPSAFE(0x006AA770);
// Not really where its called, but easy way to change default objects for now
if (RCT2_GLOBAL(RCT2_ADDRESS_SCREEN_FLAGS, uint8) & SCREEN_FLAGS_SCENARIO_EDITOR)
window_editor_object_selection_select_default_objects();
window = window_create(
RCT2_GLOBAL(RCT2_ADDRESS_SCREEN_WIDTH, uint16) / 2 - 300,
max(RCT2_GLOBAL(RCT2_ADDRESS_SCREEN_HEIGHT, uint16) / 2 - 200, 28),

View File

@ -133,7 +133,7 @@ void map_element_set_terrain(rct_map_element *element, int terrain)
// Bits 0, 1, 2 for terrain are stored in element.terrain bit 5, 6, 7
element->properties.surface.terrain &= ~0xE0;
element->properties.surface.terrain = (terrain & 7) << 5;
element->properties.surface.terrain |= (terrain & 7) << 5;
}
void map_element_set_terrain_edge(rct_map_element *element, int terrain)
@ -186,6 +186,7 @@ void map_init(int size)
map_element->properties.surface.slope = 0;
map_element->properties.surface.grass_length = 1;
map_element->properties.surface.ownership = 0;
map_element->properties.surface.terrain = 0;
map_element_set_terrain(map_element, TERRAIN_GRASS);
map_element_set_terrain_edge(map_element, TERRAIN_EDGE_ROCK);

View File

@ -84,6 +84,8 @@ static void mapgen_blob(int cx, int cy, int size, int height);
static void mapgen_smooth_height(int iterations);
static void mapgen_set_height();
static void mapgen_simplex();
static int _heightSize;
static uint8 *_height;
@ -166,17 +168,22 @@ void mapgen_generate(mapgen_settings *settings)
_height = (uint8*)malloc(_heightSize * _heightSize * sizeof(uint8));
memset(_height, 0, _heightSize * _heightSize * sizeof(uint8));
// Keep overwriting the map with rough cicular blobs of different sizes and heights.
// This procedural method can produce intersecting contour like land and lakes.
// Large blobs, general shape of map
mapgen_blobs(6, _heightSize / 2, _heightSize * 4, 2, 16);
// Medium blobs
mapgen_blobs(12, _heightSize / 16, _heightSize / 8, 2, 18);
// Small blobs, small hills and lakes
mapgen_blobs(32, _heightSize / 32, _heightSize / 16, 2, 18);
if (1) {
mapgen_simplex();
mapgen_smooth_height(2 + (rand() % 6));
} else {
// Keep overwriting the map with rough cicular blobs of different sizes and heights.
// This procedural method can produce intersecting contour like land and lakes.
// Large blobs, general shape of map
mapgen_blobs(6, _heightSize / 2, _heightSize * 4, 4, 16);
// Medium blobs
mapgen_blobs(12, _heightSize / 16, _heightSize / 8, 4, 18);
// Small blobs, small hills and lakes
mapgen_blobs(32, _heightSize / 32, _heightSize / 16, 4, 18);
// Smooth the land so that their aren't cliffs round every blob.
mapgen_smooth_height(2);
// Smooth the land so that their aren't cliffs round every blob.
mapgen_smooth_height(2);
}
// Set the game map to the height map
mapgen_set_height();
@ -186,7 +193,29 @@ void mapgen_generate(mapgen_settings *settings)
while (map_smooth(1, 1, mapSize - 1, mapSize - 1)) { }
// Add the water
mapgen_set_water_level(6 + (rand() % 4) * 2);
int waterLevel = 6 + (rand() % 8) * 2;
mapgen_set_water_level(waterLevel);
// Add sandy beaches
int beachTexture = floorTexture;
if (settings->floor == -1 && floorTexture == TERRAIN_GRASS) {
switch (rand() % 4) {
case 0:
beachTexture = TERRAIN_SAND;
break;
case 1:
beachTexture = TERRAIN_SAND_LIGHT;
break;
}
}
for (y = 1; y < mapSize - 1; y++) {
for (x = 1; x < mapSize - 1; x++) {
mapElement = map_get_surface_element_at(x, y);
if (mapElement->base_height < waterLevel + 6)
map_element_set_terrain(mapElement, beachTexture);
}
}
// Place the trees
if (settings->trees != 0)
@ -290,8 +319,11 @@ static void mapgen_place_trees()
}
// Place trees
float treeToLandRatio = (10 + (rand() % 30)) / 100.0f;
int numTrees = max(4, (int)(availablePositionsCount * treeToLandRatio));
mapSize = RCT2_GLOBAL(RCT2_ADDRESS_MAP_SIZE, sint16);
for (i = 0; i < min(availablePositionsCount, 2048 + (rand() % 10000)); i++) {
for (i = 0; i < numTrees; i++) {
pos = &availablePositions[i];
type = -1;
@ -549,9 +581,9 @@ static void mapgen_smooth_height(int iterations)
int i, x, y, xx, yy, avg;
int arraySize = _heightSize * _heightSize * sizeof(uint8);
uint8 *copyHeight = malloc(arraySize);
memcpy(copyHeight, _height, arraySize);
for (i = 0; i < iterations; i++) {
memcpy(copyHeight, _height, arraySize);
for (y = 1; y < _heightSize - 1; y++) {
for (x = 1; x < _heightSize - 1; x++) {
avg = 0;
@ -563,6 +595,8 @@ static void mapgen_smooth_height(int iterations)
}
}
}
free(copyHeight);
}
/**
@ -587,7 +621,7 @@ static void mapgen_set_height()
uint8 baseHeight = (q00 + q01 + q10 + q11) / 4;
mapElement = map_get_surface_element_at(x, y);
mapElement->base_height = baseHeight * 2;
mapElement->base_height = max(2, baseHeight * 2);
mapElement->clearance_height = mapElement->base_height;
if (q00 > baseHeight)
@ -600,4 +634,145 @@ static void mapgen_set_height()
mapElement->properties.surface.slope |= 1;
}
}
}
}
#pragma region Noise
/**
* Simplex Noise Algorithm with Fractional Brownian Motion
* Based on:
* - https://code.google.com/p/simplexnoise/
* - https://code.google.com/p/fractalterraingeneration/wiki/Fractional_Brownian_Motion
*/
static float generate(float x, float y);
static int fast_floor(float x);
static float grad(int hash, float x, float y);
static uint8 perm[512];
static void noise_rand()
{
for (int i = 0; i < countof(perm); i++)
perm[i] = rand() & 0xFF;
}
static float fractal_noise(int x, int y, float frequency, int octaves, float lacunarity, float persistence)
{
float total = 0.0f;
float amplitude = persistence;
for (int i = 0; i < octaves; i++) {
total += generate(x * frequency, y * frequency) * amplitude;
frequency *= lacunarity;
amplitude *= persistence;
}
return total;
}
static float generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y) * F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = fast_floor(xs);
int j = fast_floor(ys);
float t = (float)(i + j) * G2;
float X0 = i - t; // Unskew the cell origin back to (x,y) space
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i % 256;
int jj = j % 256;
// Calculate the contribution from the three corners
float t0 = 0.5f - x0 * x0 - y0 * y0;
if (t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0);
}
float t1 = 0.5f - x1 * x1 - y1 * y1;
if (t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1);
}
float t2 = 0.5f - x2 * x2 - y2 * y2;
if (t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
static int fast_floor(float x)
{
return (x > 0) ? ((int)x) : (((int)x) - 1);
}
static int mod(int x, int m)
{
int a = x % m;
return a < 0 ? a + m : a;
}
static float grad(int hash, float x, float y)
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);
}
static void mapgen_simplex()
{
int x, y;
float freq = 1.75f * (1.0f / _heightSize);
int octaves = 6;
int low = rand() % 4;
int high = 12 + (rand() % (32 - 12));
noise_rand();
for (y = 0; y < _heightSize; y++) {
for (x = 0; x < _heightSize; x++) {
float noiseValue = clamp(-1.0f, fractal_noise(x, y, freq, octaves, 2.0f, 0.65f), 1.0f);
float normalisedNoiseValue = (noiseValue + 1.0f) / 2.0f;
set_height(x, y, low + (int)(normalisedNoiseValue * high));
}
}
}
#pragma endregion