OpenRCT2/test/testpaint/TestTrack.cpp

755 lines
27 KiB
C++

#pragma region Copyright (c) 2014-2016 OpenRCT2 Developers
/*****************************************************************************
* OpenRCT2, an open source clone of Roller Coaster Tycoon 2.
*
* OpenRCT2 is the work of many authors, a full list can be found in contributors.md
* For more information, visit https://github.com/OpenRCT2/OpenRCT2
*
* OpenRCT2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* A full copy of the GNU General Public License can be found in licence.txt
*****************************************************************************/
#pragma endregion
#include <string>
#include <vector>
#include "TestPaint.hpp"
#include "FunctionCall.hpp"
#include "GeneralSupportHeightCall.hpp"
#include "PaintIntercept.hpp"
#include "Printer.hpp"
#include "SegmentSupportHeightCall.hpp"
#include "SideTunnelCall.hpp"
#include "String.hpp"
#include "TestTrack.hpp"
#include "Utils.hpp"
#include "VerticalTunnelCall.hpp"
extern "C" {
#include "../../src/ride/ride.h"
#include "../../src/ride/track.h"
#include "../../src/ride/track_data.h"
}
interface ITestTrackFilter {
public:
virtual ~ITestTrackFilter() {}
virtual bool AppliesTo(uint8 rideType, uint8 trackType) abstract;
virtual int Variations(uint8 rideType, uint8 trackType) abstract;
virtual std::string VariantName(uint8 rideType, uint8 trackType, int variant) abstract;
virtual void ApplyTo(uint8 rideType, uint8 trackType, int variant,
rct_map_element *mapElement, rct_map_element *surfaceElement,
rct_ride *ride, rct_ride_entry *rideEntry
) abstract;
};
class CableLiftFilter : public ITestTrackFilter {
public:
bool AppliesTo(uint8 rideType, uint8 trackType) {
return rideType == RIDE_TYPE_GIGA_COASTER;
}
int Variations(uint8 rideType, uint8 trackType) {
return 2;
}
std::string VariantName(uint8 rideType, uint8 trackType, int variant) {
return String::Format("cableLift:%d", variant);
}
virtual void ApplyTo(uint8 rideType, uint8 trackType, int variant,
rct_map_element *mapElement, rct_map_element *surfaceElement,
rct_ride *ride, rct_ride_entry *rideEntry
) {
if (variant == 0) {
mapElement->properties.track.colour &= ~TRACK_ELEMENT_COLOUR_FLAG_CABLE_LIFT;
} else {
mapElement->properties.track.colour |= TRACK_ELEMENT_COLOUR_FLAG_CABLE_LIFT;
}
}
};
class ChainLiftFilter : public ITestTrackFilter {
public:
bool AppliesTo(uint8 rideType, uint8 trackType) {
return !ride_type_has_flag(rideType, RIDE_TYPE_FLAG_FLAT_RIDE);
}
int Variations(uint8 rideType, uint8 trackType) {
return 2;
}
std::string VariantName(uint8 rideType, uint8 trackType, int variant) {
return String::Format("chainLift:%d", variant);
}
virtual void ApplyTo(uint8 rideType, uint8 trackType, int variant,
rct_map_element *mapElement, rct_map_element *surfaceElement,
rct_ride *ride, rct_ride_entry *rideEntry
) {
if (variant == 0) {
mapElement->type &= ~TRACK_ELEMENT_FLAG_CHAIN_LIFT;
} else {
mapElement->type |= TRACK_ELEMENT_FLAG_CHAIN_LIFT;
}
}
};
class InvertedFilter : public ITestTrackFilter {
public:
bool AppliesTo(uint8 rideType, uint8 trackType) {
if (rideType == RIDE_TYPE_MULTI_DIMENSION_ROLLER_COASTER ||
rideType == RIDE_TYPE_FLYING_ROLLER_COASTER ||
rideType == RIDE_TYPE_LAY_DOWN_ROLLER_COASTER) {
return true;
}
return false;
}
int Variations(uint8 rideType, uint8 trackType) {
return 2;
}
std::string VariantName(uint8 rideType, uint8 trackType, int variant) {
return String::Format("inverted:%d", variant);
}
virtual void ApplyTo(uint8 rideType, uint8 trackType, int variant,
rct_map_element *mapElement, rct_map_element *surfaceElement,
rct_ride *ride, rct_ride_entry *rideEntry
) {
if (variant == 0) {
mapElement->properties.track.colour &= ~TRACK_ELEMENT_COLOUR_FLAG_INVERTED;
} else {
mapElement->properties.track.colour |= TRACK_ELEMENT_COLOUR_FLAG_INVERTED;
}
}
};
class EntranceStyleFilter : public ITestTrackFilter {
public:
bool AppliesTo(uint8 rideType, uint8 trackType) {
if (trackType == TRACK_ELEM_BEGIN_STATION ||
trackType == TRACK_ELEM_MIDDLE_STATION ||
trackType == TRACK_ELEM_END_STATION) {
return true;
}
return false;
}
int Variations(uint8 rideType, uint8 trackType) {
return RIDE_ENTRANCE_STYLE_COUNT - 1;
}
std::string VariantName(uint8 rideType, uint8 trackType, int variant) {
return String::Format("entranceStyle:%d", variant);
}
virtual void ApplyTo(uint8 rideType, uint8 trackType, int variant,
rct_map_element *mapElement, rct_map_element *surfaceElement,
rct_ride *ride, rct_ride_entry *rideEntry
) {
ride->entrance_style = variant;
}
};
static void CallOriginal(
uint8 rideType,
uint8 trackType,
uint8 direction,
uint8 trackSequence,
uint16 height,
rct_map_element *mapElement
) {
uint32 *trackDirectionList = (uint32 *) RideTypeTrackPaintFunctionsOld[rideType][trackType];
const uint8 rideIndex = 0;
// Have to call from this point as it pushes esi and expects callee to pop it
RCT2_CALLPROC_X(
0x006C4934,
rideType,
(int) trackDirectionList,
direction,
height,
(int) mapElement,
rideIndex * sizeof(rct_ride),
trackSequence
);
}
static void CallNew(
uint8 rideType,
uint8 trackType,
uint8 direction,
uint8 trackSequence,
uint16 height,
rct_map_element *mapElement
) {
TRACK_PAINT_FUNCTION_GETTER newPaintFunctionGetter = RideTypeTrackPaintFunctions[rideType];
TRACK_PAINT_FUNCTION newPaintFunction = newPaintFunctionGetter(trackType, direction);
newPaintFunction(0, trackSequence, direction, height, mapElement);
}
typedef uint8 (*TestFunction)(uint8, uint8, uint8, std::string *);
static uint8 TestTrackElementPaintCalls(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error);
static uint8 TestTrackElementSegmentSupportHeight(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error);
static uint8 TestTrackElementGeneralSupportHeight(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error);
static uint8 TestTrackElementSideTunnels(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error);
static uint8 TestTrackElementVerticalTunnels(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error);
uint8 TestTrack::TestPaintTrackElement(uint8 rideType, uint8 trackType, std::string *out) {
if (!Utils::rideSupportsTrackType(rideType, trackType)) {
return TEST_FAILED;
}
if (rideType == RIDE_TYPE_CHAIRLIFT) {
if (trackType == TRACK_ELEM_BEGIN_STATION || trackType == TRACK_ELEM_MIDDLE_STATION ||
trackType == TRACK_ELEM_END_STATION) {
// These rides check neighbouring tiles for tracks
return TEST_SKIPPED;
}
}
int sequenceCount = Utils::getTrackSequenceCount(rideType, trackType);
std::string error = String::Format("rct2: 0x%08X\n", RideTypeTrackPaintFunctionsOld[rideType][trackType]);
uint8 retVal = TEST_SUCCESS;
static TestFunction functions[] = {
TestTrackElementPaintCalls,
TestTrackElementSegmentSupportHeight,
TestTrackElementGeneralSupportHeight,
TestTrackElementSideTunnels,
TestTrackElementVerticalTunnels,
};
for (int trackSequence = 0; trackSequence < sequenceCount; trackSequence++) {
for (auto &&function : functions) {
retVal = function(rideType, trackType, trackSequence, &error);
if (retVal != TEST_SUCCESS) {
*out += error + "\n";
return retVal;
}
}
}
return retVal;
}
static uint8 TestTrackElementPaintCalls(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error) {
uint8 rideIndex = 0;
uint16 height = 3 * 16;
rct_map_element mapElement = {0};
mapElement.flags |= MAP_ELEMENT_FLAG_LAST_TILE;
mapElement.properties.track.type = trackType;
mapElement.base_height = height / 16;
g_currently_drawn_item = &mapElement;
rct_map_element surfaceElement = {0};
surfaceElement.type = MAP_ELEMENT_TYPE_SURFACE;
surfaceElement.base_height = 2;
gSurfaceElement = &surfaceElement;
gDidPassSurface = true;
TestPaint::ResetEnvironment();
TestPaint::ResetTunnels();
function_call callBuffer[256] = {0};
int callCount = 0;
// TODO: test supports
// TODO: test flat rides
// TODO: test mazes
// TODO: test underground (Wooden RC)
// TODO: test station fences
std::vector<ITestTrackFilter *> filters;
filters.push_back(new CableLiftFilter());
filters.push_back(new ChainLiftFilter());
filters.push_back(new InvertedFilter());
filters.push_back(new EntranceStyleFilter());
std::vector<ITestTrackFilter *> activeFilters;
for (auto &&filter : filters) {
if (filter->AppliesTo(rideType, trackType)) {
activeFilters.push_back(filter);
}
}
// Add an element so there's always something to add to
std::vector<uint8> filler;
filler.push_back(0);
std::vector<std::vector<uint8>> argumentPermutations;
argumentPermutations.push_back(filler);
for (size_t filterIndex = 0; filterIndex < activeFilters.size(); ++filterIndex) {
ITestTrackFilter *filter = activeFilters[filterIndex];
uint8 variantCount = filter->Variations(rideType, trackType);
std::vector<std::vector<uint8>> newArgumentPermutations;
for (int variant = 0; variant < variantCount; variant++) {
for (auto &&oldPermutation : argumentPermutations) {
std::vector<uint8> permutation;
permutation.insert(permutation.begin(), oldPermutation.begin(), oldPermutation.end());
permutation.push_back(variant);
newArgumentPermutations.push_back(permutation);
}
}
argumentPermutations.clear();
argumentPermutations.insert(argumentPermutations.begin(), newArgumentPermutations.begin(),
newArgumentPermutations.end());
}
for (auto &&arguments : argumentPermutations) {
std::string baseCaseName = "[";
for (size_t filterIndex = 0; filterIndex < activeFilters.size(); ++filterIndex) {
uint8 &variant = arguments[1 + filterIndex];
baseCaseName += activeFilters[filterIndex]->VariantName(rideType, trackType, variant);
baseCaseName += " ";
activeFilters[filterIndex]->ApplyTo(rideType, trackType, variant, &mapElement, &surfaceElement, &(gRideList[0]), gRideEntries[0]);
}
for (int currentRotation = 0; currentRotation < 4; currentRotation++) {
gCurrentRotation = currentRotation;
for (int direction = 0; direction < 4; direction++) {
RCT2_GLOBAL(0x009DE56A, sint16) = 64; // x
RCT2_GLOBAL(0x009DE56E, sint16) = 64; // y
std::string caseName = String::Format(
"%srotation:%d direction:%d trackSequence:%d]",
baseCaseName.c_str(), currentRotation, direction, trackSequence
);
PaintIntercept::ClearCalls();
TestPaint::ResetSupportHeights();
CallOriginal(rideType, trackType, direction, trackSequence, height, &mapElement);
callCount = PaintIntercept::GetCalls(callBuffer);
std::vector<function_call> oldCalls;
oldCalls.insert(oldCalls.begin(), callBuffer, callBuffer + callCount);
PaintIntercept::ClearCalls();
testpaint_clear_ignore();
TestPaint::ResetSupportHeights();
CallNew(rideType, trackType, direction, trackSequence, height, &mapElement);
if (testpaint_is_ignored(direction, trackSequence)) {
*error += String::Format("[ IGNORED ] %s\n", caseName.c_str());
continue;
}
callCount = PaintIntercept::GetCalls(callBuffer);
std::vector<function_call> newCalls;
newCalls.insert(newCalls.begin(), callBuffer, callBuffer + callCount);
bool sucess = true;
if (oldCalls.size() != newCalls.size()) {
*error += String::Format(
"Call counts don't match (was %d, expected %d). %s\n",
newCalls.size(), oldCalls.size(), caseName.c_str()
);
sucess = false;
} else if (!FunctionCall::AssertsEquals(oldCalls, newCalls)) {
*error += String::Format("Calls don't match. %s\n", caseName.c_str());
sucess = false;
}
if (!sucess) {
*error += " Expected:\n";
*error += Printer::PrintFunctionCalls(oldCalls, height);
*error += " Actual:\n";
*error += Printer::PrintFunctionCalls(newCalls, height);
return TEST_FAILED;
}
}
}
}
return TEST_SUCCESS;
}
static uint8 TestTrackElementSegmentSupportHeight(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error) {
uint8 rideIndex = 0;
uint16 height = 3 * 16;
rct_map_element mapElement = {0};
mapElement.flags |= MAP_ELEMENT_FLAG_LAST_TILE;
mapElement.properties.track.type = trackType;
mapElement.base_height = height / 16;
g_currently_drawn_item = &mapElement;
rct_map_element surfaceElement = {0};
surfaceElement.type = MAP_ELEMENT_TYPE_SURFACE;
surfaceElement.base_height = 2;
gSurfaceElement = &surfaceElement;
gDidPassSurface = true;
TestPaint::ResetEnvironment();
TestPaint::ResetTunnels();
// TODO: Test Chainlift
// TODO: Test Maze
// TODO: Allow skip
std::string state = String::Format("[trackSequence:%d chainLift:%d]", trackSequence, 0);
std::vector<SegmentSupportCall> tileSegmentSupportCalls[4];
for (int direction = 0; direction < 4; direction++) {
TestPaint::ResetSupportHeights();
CallOriginal(rideType, trackType, direction, trackSequence, height, &mapElement);
tileSegmentSupportCalls[direction] = SegmentSupportHeightCall::getSegmentCalls(gSupportSegments, direction);
}
std::vector<SegmentSupportCall> referenceCalls = tileSegmentSupportCalls[0];
if (!SegmentSupportHeightCall::CallsMatch(tileSegmentSupportCalls)) {
bool success = SegmentSupportHeightCall::FindMostCommonSupportCall(tileSegmentSupportCalls, &referenceCalls);
if (!success) {
*error += String::Format("Original segment calls didn't match. %s\n", state.c_str());
for (int direction = 0; direction < 4; direction++) {
*error += String::Format("# %d\n", direction);
*error += Printer::PrintSegmentSupportHeightCalls(tileSegmentSupportCalls[direction]);
}
return TEST_FAILED;
}
}
for (int direction = 0; direction < 4; direction++) {
TestPaint::ResetSupportHeights();
testpaint_clear_ignore();
CallNew(rideType, trackType, direction, trackSequence, height, &mapElement);
if (testpaint_is_ignored(direction, trackSequence)) {
continue;
}
std::vector<SegmentSupportCall> newCalls = SegmentSupportHeightCall::getSegmentCalls(gSupportSegments,
direction);
if (!SegmentSupportHeightCall::CallsEqual(referenceCalls, newCalls)) {
*error += String::Format(
"Segment support heights didn't match. [direction:%d] %s\n",
direction, state.c_str()
);
*error += " Expected:\n";
*error += Printer::PrintSegmentSupportHeightCalls(referenceCalls);
*error += " Actual:\n";
*error += Printer::PrintSegmentSupportHeightCalls(newCalls);
return TEST_FAILED;
}
}
return TEST_SUCCESS;
}
static uint8 TestTrackElementGeneralSupportHeight(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error) {
uint8 rideIndex = 0;
uint16 height = 3 * 16;
rct_map_element mapElement = {0};
mapElement.flags |= MAP_ELEMENT_FLAG_LAST_TILE;
mapElement.properties.track.type = trackType;
mapElement.base_height = height / 16;
g_currently_drawn_item = &mapElement;
rct_map_element surfaceElement = {0};
surfaceElement.type = MAP_ELEMENT_TYPE_SURFACE;
surfaceElement.base_height = 2;
gSurfaceElement = &surfaceElement;
gDidPassSurface = true;
TestPaint::ResetEnvironment();
TestPaint::ResetTunnels();
// TODO: Test Chainlift
// TODO: Test Maze
// TODO: Allow skip
std::string state = String::Format("[trackSequence:%d chainLift:%d]", trackSequence, 0);
SupportCall tileGeneralSupportCalls[4];
for (int direction = 0; direction < 4; direction++) {
TestPaint::ResetSupportHeights();
CallOriginal(rideType, trackType, direction, trackSequence, height, &mapElement);
tileGeneralSupportCalls[direction].height = -1;
tileGeneralSupportCalls[direction].slope = -1;
if (gSupport.height != 0) {
tileGeneralSupportCalls[direction].height = gSupport.height;
}
if (gSupport.slope != 0xFF) {
tileGeneralSupportCalls[direction].slope = gSupport.slope;
}
}
SupportCall referenceCall = tileGeneralSupportCalls[0];
if (!GeneralSupportHeightCall::CallsMatch(tileGeneralSupportCalls)) {
bool success = GeneralSupportHeightCall::FindMostCommonSupportCall(tileGeneralSupportCalls, &referenceCall);
if (!success) {
*error += String::Format("Original support calls didn't match. %s\n", state.c_str());
for (int i = 0; i < 4; ++i) {
*error += String::Format("[%d, 0x%02X] ", tileGeneralSupportCalls[i].height, tileGeneralSupportCalls[i].slope);
}
*error += "\n";
return TEST_FAILED;
}
}
for (int direction = 0; direction < 4; direction++) {
TestPaint::ResetSupportHeights();
testpaint_clear_ignore();
CallNew(rideType, trackType, direction, trackSequence, height, &mapElement);
if (testpaint_is_ignored(direction, trackSequence)) {
continue;
}
if (referenceCall.height != -1) {
if (gSupport.height != referenceCall.height) {
*error += String::Format(
"General support heights didn't match. (expected height + %d, actual: height + %d) [direction:%d] %s\n",
referenceCall.height - height,
gSupport.height - height,
direction,
state.c_str()
);
return TEST_FAILED;
}
}
if (referenceCall.slope != -1) {
if (gSupport.slope != referenceCall.slope) {
*error += String::Format(
"General support slopes didn't match. (expected 0x%02X, actual: 0x%02X) [direction:%d] %s\n",
referenceCall.slope,
gSupport.slope,
direction,
state.c_str()
);
return TEST_FAILED;
}
}
}
return TEST_SUCCESS;
}
static uint8 TestTrackElementSideTunnels(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error) {
uint8 rideIndex = 0;
uint16 height = 3 * 16;
rct_map_element mapElement = {0};
mapElement.flags |= MAP_ELEMENT_FLAG_LAST_TILE;
mapElement.properties.track.type = trackType;
mapElement.base_height = height / 16;
g_currently_drawn_item = &mapElement;
rct_map_element surfaceElement = {0};
surfaceElement.type = MAP_ELEMENT_TYPE_SURFACE;
surfaceElement.base_height = 2;
gSurfaceElement = &surfaceElement;
gDidPassSurface = true;
TestPaint::ResetEnvironment();
TestPaint::ResetTunnels();
TunnelCall tileTunnelCalls[4][4];
// TODO: test inverted tracks
for (int direction = 0; direction < 4; direction++) {
TestPaint::ResetTunnels();
for (sint8 offset = -8; offset <= 8; offset += 8) {
CallOriginal(rideType, trackType, direction, trackSequence, height + offset, &mapElement);
}
uint8 rightIndex = (direction + 1) % 4;
uint8 leftIndex = direction;
for (int i = 0; i < 4; ++i) {
tileTunnelCalls[direction][i].call = TUNNELCALL_SKIPPED;
}
bool err = false;
tileTunnelCalls[direction][rightIndex] = SideTunnelCall::ExtractTunnelCalls(gRightTunnels, gRightTunnelCount, height,
&err);
tileTunnelCalls[direction][leftIndex] = SideTunnelCall::ExtractTunnelCalls(gLeftTunnels, gLeftTunnelCount, height,
&err);
if (err) {
*error += "Multiple tunnels on one side aren't supported.\n";
return TEST_FAILED;
}
}
TunnelCall newTileTunnelCalls[4][4];
for (int direction = 0; direction < 4; direction++) {
TestPaint::ResetTunnels();
testpaint_clear_ignore();
for (sint8 offset = -8; offset <= 8; offset += 8) {
// TODO: move tunnel pushing to interface so we don't have to check the output 3 times
CallNew(rideType, trackType, direction, trackSequence, height + offset, &mapElement);
}
uint8 rightIndex = (direction + 1) % 4;
uint8 leftIndex = direction;
for (int i = 0; i < 4; ++i) {
newTileTunnelCalls[direction][i].call = TUNNELCALL_SKIPPED;
}
bool err = false;
newTileTunnelCalls[direction][rightIndex] = SideTunnelCall::ExtractTunnelCalls(gRightTunnels, gRightTunnelCount, height,
&err);
newTileTunnelCalls[direction][leftIndex] = SideTunnelCall::ExtractTunnelCalls(gLeftTunnels, gLeftTunnelCount, height,
&err);
if (err) {
*error += "Multiple tunnels on one side aren't supported.\n";
return TEST_FAILED;
}
}
if (!SideTunnelCall::TunnelCallsLineUp(tileTunnelCalls)) {
// TODO: Check that new pattern uses the same tunnel group (round, big round, etc.)
*error += String::Format(
"Original tunnel calls don\'t line up. Skipping tunnel validation [trackSequence:%d].\n",
trackSequence
);
*error += Printer::PrintSideTunnelCalls(tileTunnelCalls);
if (!SideTunnelCall::TunnelCallsLineUp(newTileTunnelCalls)) {
*error += String::Format("Decompiled tunnel calls don\'t line up. [trackSequence:%d].\n", trackSequence);
*error += Printer::PrintSideTunnelCalls(newTileTunnelCalls);
return TEST_FAILED;
}
return TEST_SUCCESS;
}
TunnelCall referencePattern[4];
SideTunnelCall::GetTunnelCallReferencePattern(tileTunnelCalls, &referencePattern);
TunnelCall actualPattern[4];
SideTunnelCall::GetTunnelCallReferencePattern(newTileTunnelCalls, &actualPattern);
if (!SideTunnelCall::TunnelPatternsMatch(referencePattern, actualPattern)) {
*error += String::Format("Tunnel calls don't match expected pattern. [trackSequence:%d]\n", trackSequence);
*error += " Expected:\n";
*error += Printer::PrintSideTunnelCalls(tileTunnelCalls);
*error += " Actual:\n";
*error += Printer::PrintSideTunnelCalls(newTileTunnelCalls);
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static uint8 TestTrackElementVerticalTunnels(uint8 rideType, uint8 trackType, uint8 trackSequence, std::string *error) {
uint8 rideIndex = 0;
uint16 height = 3 * 16;
rct_map_element mapElement = {0};
mapElement.flags |= MAP_ELEMENT_FLAG_LAST_TILE;
mapElement.properties.track.type = trackType;
mapElement.base_height = height / 16;
g_currently_drawn_item = &mapElement;
rct_map_element surfaceElement = {0};
surfaceElement.type = MAP_ELEMENT_TYPE_SURFACE;
surfaceElement.base_height = 2;
gSurfaceElement = &surfaceElement;
gDidPassSurface = true;
TestPaint::ResetEnvironment();
TestPaint::ResetTunnels();
uint8 verticalTunnelHeight[4];
for (int direction = 0; direction < 4; direction++) {
gVerticalTunnelHeight = 0;
CallOriginal(rideType, trackType, direction, trackSequence, height, &mapElement);
verticalTunnelHeight[direction] = gVerticalTunnelHeight;
}
if (!VerticalTunnelCall::HeightIsConsistent(verticalTunnelHeight)) {
*error += String::Format(
"Original vertical tunnel height is inconsistent, skipping test. [trackSequence:%d]\n",
trackSequence
);
return TEST_SUCCESS;
}
uint8 referenceHeight = verticalTunnelHeight[0];
for (int direction = 0; direction < 4; direction++) {
gVerticalTunnelHeight = 0;
testpaint_clear_ignore();
CallOriginal(rideType, trackType, direction, trackSequence, height, &mapElement);
if (testpaint_is_ignored(direction, trackSequence)) {
continue;
}
if (gVerticalTunnelHeight != referenceHeight) {
if (gVerticalTunnelHeight == 0) {
*error += String::Format(
"Expected no tunnel. Actual: %d [trackSequence:%d]\n",
gVerticalTunnelHeight, trackSequence
);
return TEST_FAILED;
}
*error += String::Format(
"Expected vertical tunnel height to be `%s`, was `%s`. [trackSequence:%d direction:%d]\n",
Printer::PrintHeightOffset((referenceHeight * 16), height).c_str(),
Printer::PrintHeightOffset((gVerticalTunnelHeight * 16), height).c_str(),
trackSequence,
direction
);
return TEST_FAILED;
}
}
return TEST_SUCCESS;
}