OpenRCT2/src/openrct2/drawing/Drawing.Sprite.cpp

803 lines
24 KiB
C++

/*****************************************************************************
* Copyright (c) 2014-2019 OpenRCT2 developers
*
* For a complete list of all authors, please refer to contributors.md
* Interested in contributing? Visit https://github.com/OpenRCT2/OpenRCT2
*
* OpenRCT2 is licensed under the GNU General Public License version 3.
*****************************************************************************/
#include "../Context.h"
#include "../OpenRCT2.h"
#include "../PlatformEnvironment.h"
#include "../config/Config.h"
#include "../core/FileStream.hpp"
#include "../core/Path.hpp"
#include "../platform/platform.h"
#include "../sprites.h"
#include "../ui/UiContext.h"
#include "../util/Util.h"
#include "Drawing.h"
#include <algorithm>
#include <memory>
#include <stdexcept>
#include <vector>
using namespace OpenRCT2;
using namespace OpenRCT2::Ui;
// clang-format off
constexpr struct
{
int start;
int32_t x_offset;
int32_t y_offset;
}
sprite_peep_pickup_starts[15] =
{
{SPR_PEEP_PICKUP_GUEST_START, 0, 15},
{SPR_PEEP_PICKUP_HANDYMAN_START, 1, 18},
{SPR_PEEP_PICKUP_MECHANIC_START, 3, 22},
{SPR_PEEP_PICKUP_GUARD_START, 3, 15},
{SPR_PEEP_PICKUP_PANDA_START, -1, 19},
{SPR_PEEP_PICKUP_TIGER_START, -1, 17},
{SPR_PEEP_PICKUP_ELEPHANT_START, -1, 17},
{SPR_PEEP_PICKUP_GORILLA_START, 0, 17},
{SPR_PEEP_PICKUP_SNOWMAN_START, -1, 16},
{SPR_PEEP_PICKUP_KNIGHT_START, -2, 17},
{SPR_PEEP_PICKUP_BANDIT_START, 0, 16},
{SPR_PEEP_PICKUP_PIRATE_START, 0, 16},
{SPR_PEEP_PICKUP_SHERIFF_START, 0, 16},
{SPR_PEEP_PICKUP_ASTRONAUT_START, 0, 16},
{SPR_PEEP_PICKUP_ROMAN_START, -1, 17},
};
static inline uint32_t rctc_to_rct2_index(uint32_t image)
{
if ( image < 1542) return image;
else if (image >= 1574 && image < 4983) return image - 32;
else if (image >= 4986 && image < 17189) return image - 35;
else if (image >= 17191 && image < 18121) return image - 37;
else if (image >= 18123 && image < 23800) return image - 39;
else if (image >= 23804 && image < 24670) return image - 43;
else if (image >= 24674 && image < 28244) return image - 47;
else if (image >= 28246 ) return image - 49;
else throw std::runtime_error("Invalid RCTC g1.dat file");
}
// clang-format on
static void read_and_convert_gxdat(IStream* stream, size_t count, bool is_rctc, rct_g1_element* elements)
{
auto g1Elements32 = std::make_unique<rct_g1_element_32bit[]>(count);
stream->Read(g1Elements32.get(), count * sizeof(rct_g1_element_32bit));
if (is_rctc)
{
// Process RCTC's g1.dat file
uint32_t rctc = 0;
for (size_t i = 0; i < SPR_G1_END; ++i)
{
// RCTC's g1.dat has a number of additional elements
// added between the RCT2 elements. This switch
// statement skips over the elements we don't want.
switch (i)
{
case 1542:
rctc += 32;
break;
case 23761:
case 24627:
rctc += 4;
break;
case 4951:
rctc += 3;
break;
case 17154:
case 18084:
case 28197:
rctc += 2;
break;
}
const rct_g1_element_32bit& src = g1Elements32[rctc];
// Double cast to silence compiler warning about casting to
// pointer from integer of mismatched length.
elements[i].offset = reinterpret_cast<uint8_t*>(static_cast<uintptr_t>(src.offset));
elements[i].width = src.width;
elements[i].height = src.height;
elements[i].x_offset = src.x_offset;
elements[i].y_offset = src.y_offset;
elements[i].flags = src.flags;
if (src.flags & G1_FLAG_HAS_ZOOM_SPRITE)
{
elements[i].zoomed_offset = static_cast<int32_t>(i - rctc_to_rct2_index(rctc - src.zoomed_offset));
}
else
{
elements[i].zoomed_offset = src.zoomed_offset;
}
++rctc;
}
// The pincer graphic for picking up peeps is different in
// RCTC, and the sprites have different offsets to accommodate
// the change. This reverts the offsets to their RCT2 values.
for (const auto& animation : sprite_peep_pickup_starts)
{
for (int i = 0; i < SPR_PEEP_PICKUP_COUNT; ++i)
{
elements[animation.start + i].x_offset -= animation.x_offset;
elements[animation.start + i].y_offset -= animation.y_offset;
}
}
}
else
{
for (size_t i = 0; i < count; i++)
{
const rct_g1_element_32bit& src = g1Elements32[i];
// Double cast to silence compiler warning about casting to
// pointer from integer of mismatched length.
elements[i].offset = reinterpret_cast<uint8_t*>(static_cast<uintptr_t>(src.offset));
elements[i].width = src.width;
elements[i].height = src.height;
elements[i].x_offset = src.x_offset;
elements[i].y_offset = src.y_offset;
elements[i].flags = src.flags;
elements[i].zoomed_offset = src.zoomed_offset;
}
}
}
void mask_scalar(
int32_t width, int32_t height, const uint8_t* RESTRICT maskSrc, const uint8_t* RESTRICT colourSrc, uint8_t* RESTRICT dst,
int32_t maskWrap, int32_t colourWrap, int32_t dstWrap)
{
for (int32_t yy = 0; yy < height; yy++)
{
for (int32_t xx = 0; xx < width; xx++)
{
uint8_t colour = (*colourSrc) & (*maskSrc);
if (colour != 0)
{
*dst = colour;
}
maskSrc++;
colourSrc++;
dst++;
}
maskSrc += maskWrap;
colourSrc += colourWrap;
dst += dstWrap;
}
}
static rct_gx _g1 = {};
static rct_gx _g2 = {};
static rct_gx _csg = {};
static bool _csgLoaded = false;
static rct_g1_element _g1Temp = {};
static std::vector<rct_g1_element> _imageListElements;
bool gTinyFontAntiAliased = false;
/**
*
* rct2: 0x00678998
*/
bool gfx_load_g1(const IPlatformEnvironment& env)
{
log_verbose("gfx_load_g1(...)");
try
{
auto path = Path::Combine(env.GetDirectoryPath(DIRBASE::RCT2, DIRID::DATA), "g1.dat");
auto fs = FileStream(path, FILE_MODE_OPEN);
_g1.header = fs.ReadValue<rct_g1_header>();
log_verbose("g1.dat, number of entries: %u", _g1.header.num_entries);
if (_g1.header.num_entries < SPR_G1_END)
{
throw std::runtime_error("Not enough elements in g1.dat");
}
// Read element headers
bool is_rctc = _g1.header.num_entries == SPR_RCTC_G1_END;
_g1.elements.resize(_g1.header.num_entries);
read_and_convert_gxdat(&fs, _g1.header.num_entries, is_rctc, _g1.elements.data());
gTinyFontAntiAliased = is_rctc;
// Read element data
_g1.data = fs.ReadArray<uint8_t>(_g1.header.total_size);
// Fix entry data offsets
for (uint32_t i = 0; i < _g1.header.num_entries; i++)
{
_g1.elements[i].offset += reinterpret_cast<uintptr_t>(_g1.data);
}
return true;
}
catch (const std::exception&)
{
_g1.elements.clear();
_g1.elements.shrink_to_fit();
log_fatal("Unable to load g1 graphics");
if (!gOpenRCT2Headless)
{
auto uiContext = GetContext()->GetUiContext();
uiContext->ShowMessageBox("Unable to load g1.dat. Your RollerCoaster Tycoon 2 path may be incorrectly set.");
}
return false;
}
}
void gfx_unload_g1()
{
SafeFree(_g1.data);
_g1.elements.clear();
_g1.elements.shrink_to_fit();
}
void gfx_unload_g2()
{
SafeFree(_g2.data);
_g2.elements.clear();
_g2.elements.shrink_to_fit();
}
void gfx_unload_csg()
{
SafeFree(_csg.data);
_csg.elements.clear();
_csg.elements.shrink_to_fit();
}
bool gfx_load_g2()
{
log_verbose("gfx_load_g2()");
char path[MAX_PATH];
platform_get_openrct2_data_path(path, sizeof(path));
safe_strcat_path(path, "g2.dat", MAX_PATH);
try
{
auto fs = FileStream(path, FILE_MODE_OPEN);
_g2.header = fs.ReadValue<rct_g1_header>();
// Read element headers
_g2.elements.resize(_g2.header.num_entries);
read_and_convert_gxdat(&fs, _g2.header.num_entries, false, _g2.elements.data());
// Read element data
_g2.data = fs.ReadArray<uint8_t>(_g2.header.total_size);
// Fix entry data offsets
for (uint32_t i = 0; i < _g2.header.num_entries; i++)
{
_g2.elements[i].offset += reinterpret_cast<uintptr_t>(_g2.data);
}
return true;
}
catch (const std::exception&)
{
_g2.elements.clear();
_g2.elements.shrink_to_fit();
log_fatal("Unable to load g2 graphics");
if (!gOpenRCT2Headless)
{
auto uiContext = GetContext()->GetUiContext();
uiContext->ShowMessageBox("Unable to load g2.dat");
}
}
return false;
}
bool gfx_load_csg()
{
log_verbose("gfx_load_csg()");
if (str_is_null_or_empty(gConfigGeneral.rct1_path))
{
log_verbose(" unable to load CSG, RCT1 path not set");
return false;
}
auto pathHeaderPath = FindCsg1idatAtLocation(gConfigGeneral.rct1_path);
auto pathDataPath = FindCsg1datAtLocation(gConfigGeneral.rct1_path);
try
{
auto fileHeader = FileStream(pathHeaderPath, FILE_MODE_OPEN);
auto fileData = FileStream(pathDataPath, FILE_MODE_OPEN);
size_t fileHeaderSize = fileHeader.GetLength();
size_t fileDataSize = fileData.GetLength();
_csg.header.num_entries = static_cast<uint32_t>(fileHeaderSize / sizeof(rct_g1_element_32bit));
_csg.header.total_size = static_cast<uint32_t>(fileDataSize);
if (!CsgIsUsable(_csg))
{
log_warning("Cannot load CSG1.DAT, it has too few entries. Only CSG1.DAT from Loopy Landscapes will work.");
return false;
}
// Read element headers
_csg.elements.resize(_csg.header.num_entries);
read_and_convert_gxdat(&fileHeader, _csg.header.num_entries, false, _csg.elements.data());
// Read element data
_csg.data = fileData.ReadArray<uint8_t>(_csg.header.total_size);
// Fix entry data offsets
for (uint32_t i = 0; i < _csg.header.num_entries; i++)
{
_csg.elements[i].offset += reinterpret_cast<uintptr_t>(_csg.data);
// RCT1 used zoomed offsets that counted from the beginning of the file, rather than from the current sprite.
if (_csg.elements[i].flags & G1_FLAG_HAS_ZOOM_SPRITE)
{
_csg.elements[i].zoomed_offset = i - _csg.elements[i].zoomed_offset;
}
}
_csgLoaded = true;
return true;
}
catch (const std::exception&)
{
_csg.elements.clear();
_csg.elements.shrink_to_fit();
log_error("Unable to load csg graphics");
return false;
}
}
static std::optional<PaletteMap> FASTCALL gfx_draw_sprite_get_palette(ImageId imageId)
{
if (!imageId.HasSecondary())
{
uint8_t paletteId = imageId.GetRemap();
if (!imageId.IsBlended())
{
paletteId &= 0x7F;
}
return GetPaletteMapForColour(paletteId);
}
else
{
auto paletteMap = PaletteMap(gPeepPalette);
if (imageId.HasTertiary())
{
paletteMap = PaletteMap(gOtherPalette);
auto tertiaryPaletteMap = GetPaletteMapForColour(imageId.GetTertiary());
if (tertiaryPaletteMap)
{
paletteMap.Copy(
PALETTE_OFFSET_REMAP_TERTIARY, *tertiaryPaletteMap, PALETTE_OFFSET_REMAP_PRIMARY, PALETTE_LENGTH_REMAP);
}
}
auto primaryPaletteMap = GetPaletteMapForColour(imageId.GetPrimary());
if (primaryPaletteMap)
{
paletteMap.Copy(
PALETTE_OFFSET_REMAP_PRIMARY, *primaryPaletteMap, PALETTE_OFFSET_REMAP_PRIMARY, PALETTE_LENGTH_REMAP);
}
auto secondaryPaletteMap = GetPaletteMapForColour(imageId.GetSecondary());
if (secondaryPaletteMap)
{
paletteMap.Copy(
PALETTE_OFFSET_REMAP_SECONDARY, *secondaryPaletteMap, PALETTE_OFFSET_REMAP_PRIMARY, PALETTE_LENGTH_REMAP);
}
return paletteMap;
}
}
void FASTCALL gfx_draw_sprite_software(rct_drawpixelinfo* dpi, ImageId imageId, int32_t x, int32_t y)
{
if (imageId.HasValue())
{
auto palette = gfx_draw_sprite_get_palette(imageId);
if (!palette)
{
palette = PaletteMap::GetDefault();
}
gfx_draw_sprite_palette_set_software(dpi, imageId, x, y, *palette);
}
}
/*
* rct: 0x0067A46E
* image_id (ebx) and also (0x00EDF81C)
* palette_pointer (0x9ABDA4)
* unknown_pointer (0x9E3CDC)
* dpi (edi)
* x (cx)
* y (dx)
*/
void FASTCALL gfx_draw_sprite_palette_set_software(
rct_drawpixelinfo* dpi, ImageId imageId, int32_t x, int32_t y, const PaletteMap& paletteMap)
{
const auto* g1 = gfx_get_g1_element(imageId);
if (g1 == nullptr)
{
return;
}
if (dpi->zoom_level > 0 && (g1->flags & G1_FLAG_HAS_ZOOM_SPRITE))
{
rct_drawpixelinfo zoomed_dpi = *dpi;
zoomed_dpi.bits = dpi->bits;
zoomed_dpi.x = dpi->x >> 1;
zoomed_dpi.y = dpi->y >> 1;
zoomed_dpi.height = dpi->height >> 1;
zoomed_dpi.width = dpi->width >> 1;
zoomed_dpi.pitch = dpi->pitch;
zoomed_dpi.zoom_level = dpi->zoom_level - 1;
gfx_draw_sprite_palette_set_software(
&zoomed_dpi, imageId.WithIndex(imageId.GetIndex() - g1->zoomed_offset), x >> 1, y >> 1, paletteMap);
return;
}
if (dpi->zoom_level > 0 && (g1->flags & G1_FLAG_NO_ZOOM_DRAW))
{
return;
}
// Its used super often so we will define it to a separate variable.
auto zoom_level = dpi->zoom_level;
int32_t zoom_mask = zoom_level > 0 ? 0xFFFFFFFF * zoom_level : 0xFFFFFFFF;
if (zoom_level > 0 && g1->flags & G1_FLAG_RLE_COMPRESSION)
{
x -= ~zoom_mask;
y -= ~zoom_mask;
}
// This will be the height of the drawn image
int32_t height = g1->height;
// This is the start y coordinate on the destination
int16_t dest_start_y = y + g1->y_offset;
// For whatever reason the RLE version does not use
// the zoom mask on the y coordinate but does on x.
if (g1->flags & G1_FLAG_RLE_COMPRESSION)
{
dest_start_y -= dpi->y;
}
else
{
dest_start_y = (dest_start_y & zoom_mask) - dpi->y;
}
// This is the start y coordinate on the source
int32_t source_start_y = 0;
if (dest_start_y < 0)
{
// If the destination y is negative reduce the height of the
// image as we will cut off the bottom
height += dest_start_y;
// If the image is no longer visible nothing to draw
if (height <= 0)
{
return;
}
// The source image will start a further up the image
source_start_y -= dest_start_y;
// The destination start is now reset to 0
dest_start_y = 0;
}
else
{
if ((g1->flags & G1_FLAG_RLE_COMPRESSION) && zoom_level > 0)
{
source_start_y -= dest_start_y & ~zoom_mask;
height += dest_start_y & ~zoom_mask;
}
}
int32_t dest_end_y = dest_start_y + height;
if (dest_end_y > dpi->height)
{
// If the destination y is outside of the drawing
// image reduce the height of the image
height -= dest_end_y - dpi->height;
}
// If the image no longer has anything to draw
if (height <= 0)
return;
dest_start_y = dest_start_y / zoom_level;
// This will be the width of the drawn image
int32_t width = g1->width;
// This is the source start x coordinate
int32_t source_start_x = 0;
// This is the destination start x coordinate
int16_t dest_start_x = ((x + g1->x_offset + ~zoom_mask) & zoom_mask) - dpi->x;
if (dest_start_x < 0)
{
// If the destination is negative reduce the width
// image will cut off the side
width += dest_start_x;
// If there is no image to draw
if (width <= 0)
{
return;
}
// The source start will also need to cut off the side
source_start_x -= dest_start_x;
// Reset the destination to 0
dest_start_x = 0;
}
else
{
if ((g1->flags & G1_FLAG_RLE_COMPRESSION) && zoom_level > 0)
{
source_start_x -= dest_start_x & ~zoom_mask;
}
}
int32_t dest_end_x = dest_start_x + width;
if (dest_end_x > dpi->width)
{
// If the destination x is outside of the drawing area
// reduce the image width.
width -= dest_end_x - dpi->width;
// If there is no image to draw.
if (width <= 0)
return;
}
dest_start_x = dest_start_x / zoom_level;
uint8_t* dest_pointer = dpi->bits;
// Move the pointer to the start point of the destination
dest_pointer += ((dpi->width / zoom_level) + dpi->pitch) * dest_start_y + dest_start_x;
DrawSpriteArgs args(dpi, imageId, paletteMap, *g1, source_start_x, source_start_y, width, height, dest_pointer);
gfx_sprite_to_buffer(args);
}
void FASTCALL gfx_sprite_to_buffer(DrawSpriteArgs& args)
{
if (args.SourceImage.flags & G1_FLAG_RLE_COMPRESSION)
{
gfx_rle_sprite_to_buffer(args);
}
else if (!(args.SourceImage.flags & G1_FLAG_1))
{
gfx_bmp_sprite_to_buffer(args);
}
}
/**
* Draws the given colour image masked out by the given mask image. This can currently only cope with bitmap formatted mask and
* colour images. Presumably the original game never used RLE images for masking. Colour 0 represents transparent.
*
* rct2: 0x00681DE2
*/
void FASTCALL
gfx_draw_sprite_raw_masked_software(rct_drawpixelinfo* dpi, int32_t x, int32_t y, int32_t maskImage, int32_t colourImage)
{
int32_t left, top, right, bottom, width, height;
auto imgMask = gfx_get_g1_element(maskImage & 0x7FFFF);
auto imgColour = gfx_get_g1_element(colourImage & 0x7FFFF);
if (imgMask == nullptr || imgColour == nullptr)
{
return;
}
// Only BMP format is supported for masking
if (!(imgMask->flags & G1_FLAG_BMP) || !(imgColour->flags & G1_FLAG_BMP))
{
gfx_draw_sprite_software(dpi, ImageId::FromUInt32(colourImage), x, y);
return;
}
if (dpi->zoom_level != 0)
{
// TODO: Implement other zoom levels (probably not used though)
assert(false);
return;
}
width = std::min(imgMask->width, imgColour->width);
height = std::min(imgMask->height, imgColour->height);
x += imgMask->x_offset;
y += imgMask->y_offset;
left = std::max<int32_t>(dpi->x, x);
top = std::max<int32_t>(dpi->y, y);
right = std::min(dpi->x + dpi->width, x + width);
bottom = std::min(dpi->y + dpi->height, y + height);
width = right - left;
height = bottom - top;
if (width < 0 || height < 0)
return;
int32_t skipX = left - x;
int32_t skipY = top - y;
uint8_t const* maskSrc = imgMask->offset + (skipY * imgMask->width) + skipX;
uint8_t const* colourSrc = imgColour->offset + (skipY * imgColour->width) + skipX;
uint8_t* dst = dpi->bits + (left - dpi->x) + ((top - dpi->y) * (dpi->width + dpi->pitch));
int32_t maskWrap = imgMask->width - width;
int32_t colourWrap = imgColour->width - width;
int32_t dstWrap = ((dpi->width + dpi->pitch) - width);
mask_fn(width, height, maskSrc, colourSrc, dst, maskWrap, colourWrap, dstWrap);
}
const rct_g1_element* gfx_get_g1_element(ImageId imageId)
{
return gfx_get_g1_element(imageId.GetIndex());
}
const rct_g1_element* gfx_get_g1_element(int32_t image_id)
{
openrct2_assert(!gOpenRCT2NoGraphics, "gfx_get_g1_element called on headless instance");
auto offset = static_cast<size_t>(image_id);
if (offset == 0x7FFFF)
{
return nullptr;
}
else if (offset == SPR_TEMP)
{
return &_g1Temp;
}
else if (offset < SPR_RCTC_G1_END)
{
if (offset < _g1.elements.size())
{
return &_g1.elements[offset];
}
}
else if (offset < SPR_G2_END)
{
size_t idx = offset - SPR_G2_BEGIN;
if (idx < _g2.header.num_entries)
{
return &_g2.elements[idx];
}
else
{
log_warning("Invalid entry in g2.dat requested, idx = %u. You may have to update your g2.dat.", idx);
}
}
else if (offset < SPR_CSG_END)
{
if (is_csg_loaded())
{
size_t idx = offset - SPR_CSG_BEGIN;
if (idx < _csg.header.num_entries)
{
return &_csg.elements[idx];
}
else
{
log_warning("Invalid entry in csg.dat requested, idx = %u.", idx);
}
}
}
else if (offset < SPR_IMAGE_LIST_END)
{
size_t idx = offset - SPR_IMAGE_LIST_BEGIN;
if (idx < _imageListElements.size())
{
return &_imageListElements[idx];
}
}
return nullptr;
}
void gfx_set_g1_element(int32_t imageId, const rct_g1_element* g1)
{
bool isTemp = imageId == SPR_TEMP;
bool isValid = (imageId >= SPR_IMAGE_LIST_BEGIN && imageId < SPR_IMAGE_LIST_END)
|| (imageId >= SPR_SCROLLING_TEXT_START && imageId < SPR_SCROLLING_TEXT_END);
#ifdef DEBUG
openrct2_assert(!gOpenRCT2NoGraphics, "gfx_set_g1_element called on headless instance");
openrct2_assert(isValid || isTemp, "gfx_set_g1_element called with unexpected image id");
openrct2_assert(g1 != nullptr, "g1 was nullptr");
#endif
if (g1 != nullptr)
{
if (isTemp)
{
_g1Temp = *g1;
}
else if (isValid)
{
if (imageId < SPR_RCTC_G1_END)
{
if (imageId < static_cast<int32_t>(_g1.elements.size()))
{
_g1.elements[imageId] = *g1;
}
}
else
{
size_t idx = static_cast<size_t>(imageId) - SPR_IMAGE_LIST_BEGIN;
// Grow the element buffer if necessary
while (idx >= _imageListElements.size())
{
_imageListElements.resize(std::max<size_t>(256, _imageListElements.size() * 2));
}
_imageListElements[idx] = *g1;
}
}
}
}
bool is_csg_loaded()
{
return _csgLoaded;
}
rct_size16 FASTCALL gfx_get_sprite_size(uint32_t image_id)
{
const rct_g1_element* g1 = gfx_get_g1_element(image_id & 0X7FFFF);
rct_size16 size = {};
if (g1 != nullptr)
{
size.width = g1->width;
size.height = g1->height;
}
return size;
}
size_t g1_calculate_data_size(const rct_g1_element* g1)
{
if (g1->flags & G1_FLAG_PALETTE)
{
return g1->width * 3;
}
else if (g1->flags & G1_FLAG_RLE_COMPRESSION)
{
if (g1->offset == nullptr)
{
return 0;
}
else
{
auto idx = (g1->height - 1) * 2;
uint16_t offset = g1->offset[idx] | (g1->offset[idx + 1] << 8);
uint8_t* ptr = g1->offset + offset;
bool endOfLine = false;
do
{
uint8_t chunk0 = *ptr++;
ptr++; // offset
uint8_t chunkSize = chunk0 & 0x7F;
ptr += chunkSize;
endOfLine = (chunk0 & 0x80) != 0;
} while (!endOfLine);
return ptr - g1->offset;
}
}
else
{
return g1->width * g1->height;
}
}