OpenRCT2/src/openrct2/drawing/Image.cpp

257 lines
6.9 KiB
C++

/*****************************************************************************
* Copyright (c) 2014-2024 OpenRCT2 developers
*
* For a complete list of all authors, please refer to contributors.md
* Interested in contributing? Visit https://github.com/OpenRCT2/OpenRCT2
*
* OpenRCT2 is licensed under the GNU General Public License version 3.
*****************************************************************************/
#include "Image.h"
#include "../OpenRCT2.h"
#include "../core/Console.hpp"
#include "../core/Guard.hpp"
#include "../sprites.h"
#include "Drawing.h"
#include <algorithm>
#include <list>
constexpr uint32_t BASE_IMAGE_ID = SPR_IMAGE_LIST_BEGIN;
constexpr uint32_t MAX_IMAGES = SPR_IMAGE_LIST_END - BASE_IMAGE_ID;
static bool _initialised = false;
static std::list<ImageList> _freeLists;
static uint32_t _allocatedImageCount;
#ifdef DEBUG_LEVEL_1
static std::list<ImageList> _allocatedLists;
// MSVC's compiler doesn't support the [[maybe_unused]] attribute for unused static functions. Until this has been resolved, we
// need to explicitly tell the compiler to temporarily disable the warning.
// See discussion at https://github.com/OpenRCT2/OpenRCT2/pull/7617
# pragma warning(push)
# pragma warning(disable : 4505) // unreferenced local function has been removed
[[maybe_unused]] static bool AllocatedListContains(uint32_t baseImageId, uint32_t count)
{
bool contains = std::any_of(
_allocatedLists.begin(), _allocatedLists.end(), [baseImageId, count](const ImageList& imageList) -> bool {
return imageList.BaseId == baseImageId && imageList.Count == count;
});
return contains;
}
# pragma warning(pop)
static bool AllocatedListRemove(uint32_t baseImageId, uint32_t count)
{
auto foundItem = std::find_if(
_allocatedLists.begin(), _allocatedLists.end(), [baseImageId, count](const ImageList& imageList) -> bool {
return imageList.BaseId == baseImageId && imageList.Count == count;
});
if (foundItem != _allocatedLists.end())
{
_allocatedLists.erase(foundItem);
return true;
}
return false;
}
#endif
static uint32_t GetNumFreeImagesRemaining()
{
return MAX_IMAGES - _allocatedImageCount;
}
static void InitialiseImageList()
{
Guard::Assert(!_initialised, GUARD_LINE);
_freeLists.clear();
_freeLists.push_back({ BASE_IMAGE_ID, MAX_IMAGES });
#ifdef DEBUG_LEVEL_1
_allocatedLists.clear();
#endif
_allocatedImageCount = 0;
_initialised = true;
}
/**
* Merges all the free lists into one, a process of defragmentation.
*/
static void MergeFreeLists()
{
_freeLists.sort([](const ImageList& a, const ImageList& b) -> bool { return a.BaseId < b.BaseId; });
for (auto it = _freeLists.begin(); it != _freeLists.end(); it++)
{
bool mergeHappened;
do
{
mergeHappened = false;
auto nextIt = std::next(it);
if (nextIt != _freeLists.end())
{
if (it->BaseId + it->Count == nextIt->BaseId)
{
// Merge next list into this list
it->Count += nextIt->Count;
_freeLists.erase(nextIt);
mergeHappened = true;
}
}
} while (mergeHappened);
}
}
static uint32_t TryAllocateImageList(uint32_t count)
{
for (auto it = _freeLists.begin(); it != _freeLists.end(); it++)
{
ImageList imageList = *it;
if (imageList.Count >= count)
{
_freeLists.erase(it);
if (imageList.Count > count)
{
ImageList remainder = { imageList.BaseId + count, imageList.Count - count };
_freeLists.push_back(remainder);
}
#ifdef DEBUG_LEVEL_1
_allocatedLists.push_back({ imageList.BaseId, count });
#endif
_allocatedImageCount += count;
return imageList.BaseId;
}
}
return ImageIndexUndefined;
}
static uint32_t AllocateImageList(uint32_t count)
{
Guard::Assert(count != 0, GUARD_LINE);
if (!_initialised)
{
InitialiseImageList();
}
uint32_t baseImageId = ImageIndexUndefined;
uint32_t freeImagesRemaining = GetNumFreeImagesRemaining();
if (freeImagesRemaining >= count)
{
baseImageId = TryAllocateImageList(count);
if (baseImageId == ImageIndexUndefined)
{
// Defragment and try again
MergeFreeLists();
baseImageId = TryAllocateImageList(count);
}
}
return baseImageId;
}
static void FreeImageList(uint32_t baseImageId, uint32_t count)
{
Guard::Assert(_initialised, GUARD_LINE);
Guard::Assert(baseImageId >= BASE_IMAGE_ID, GUARD_LINE);
#ifdef DEBUG_LEVEL_1
if (!AllocatedListRemove(baseImageId, count))
{
LOG_ERROR("Cannot unload %u items from offset %u", count, baseImageId);
}
#endif
_allocatedImageCount -= count;
for (auto it = _freeLists.begin(); it != _freeLists.end(); it++)
{
if (it->BaseId + it->Count == baseImageId)
{
it->Count += count;
return;
}
if (baseImageId + count == it->BaseId)
{
it->BaseId = baseImageId;
it->Count += count;
return;
}
}
_freeLists.push_back({ baseImageId, count });
}
uint32_t GfxObjectAllocateImages(const G1Element* images, uint32_t count)
{
if (count == 0 || gOpenRCT2NoGraphics)
{
return ImageIndexUndefined;
}
uint32_t baseImageId = AllocateImageList(count);
if (baseImageId == ImageIndexUndefined)
{
LOG_ERROR("Reached maximum image limit.");
return ImageIndexUndefined;
}
uint32_t imageId = baseImageId;
for (uint32_t i = 0; i < count; i++)
{
GfxSetG1Element(imageId, &images[i]);
DrawingEngineInvalidateImage(imageId);
imageId++;
}
return baseImageId;
}
void GfxObjectFreeImages(uint32_t baseImageId, uint32_t count)
{
if (baseImageId != 0 && baseImageId != ImageIndexUndefined)
{
// Zero the G1 elements so we don't have invalid pointers
// and data lying about
for (uint32_t i = 0; i < count; i++)
{
uint32_t imageId = baseImageId + i;
G1Element g1 = {};
GfxSetG1Element(imageId, &g1);
DrawingEngineInvalidateImage(imageId);
}
FreeImageList(baseImageId, count);
}
}
void GfxObjectCheckAllImagesFreed()
{
if (_allocatedImageCount != 0)
{
#ifdef DEBUG_LEVEL_1
Guard::Assert(_allocatedImageCount == 0, "%u images were not freed", _allocatedImageCount);
#else
Console::Error::WriteLine("%u images were not freed", _allocatedImageCount);
#endif
}
}
size_t ImageListGetUsedCount()
{
return _allocatedImageCount;
}
size_t ImageListGetMaximum()
{
return MAX_IMAGES;
}
const std::list<ImageList>& GetAvailableAllocationRanges()
{
return _freeLists;
}