OpenTTD/src/blitter/32bpp_sse4.cpp

299 lines
10 KiB
C++
Raw Normal View History

/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file 32bpp_sse4.cpp Implementation of the SSE4 32 bpp blitter. */
#ifdef WITH_SSE
#include "../stdafx.h"
#include "../zoom_func.h"
#include "../settings_type.h"
#include "32bpp_sse4.hpp"
/** Instantiation of the SSE4 32bpp blitter factory. */
static FBlitter_32bppSSE4 iFBlitter_32bppSSE4;
/**
* Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
*
* @tparam mode blitter mode
* @param bp further blitting parameters
* @param zoom zoom level at which we are drawing
*/
IGNORE_UNINITIALIZED_WARNING_START
template <BlitterMode mode, Blitter_32bppSSE2::ReadMode read_mode, Blitter_32bppSSE2::BlockType bt_last>
inline void Blitter_32bppSSE4::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
{
const byte * const remap = bp->remap;
Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left;
int effective_width = bp->width;
/* Find where to start reading in the source sprite. */
const SpriteData * const sd = (const SpriteData *) bp->sprite;
const SpriteInfo * const si = &sd->infos[zoom];
const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width;
const Colour *src_rgba_line = (const Colour *) ((const byte *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size);
if (read_mode != RM_WITH_MARGIN) {
src_rgba_line += bp->skip_left;
src_mv_line += bp->skip_left;
}
/* Load these variables into register before loop. */
const __m128i a_cm = ALPHA_CONTROL_MASK;
const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK;
const __m128i briAB_cm = BRIGHTNESS_LOW_CONTROL_MASK;
const __m128i div_cleaner = BRIGHTNESS_DIV_CLEANER;
const __m128i ob_check = OVERBRIGHT_PRESENCE_MASK;
const __m128i ob_mask = OVERBRIGHT_VALUE_MASK;
const __m128i ob_cm = OVERBRIGHT_CONTROL_MASK;
const __m128i tr_nom_base = TRANSPARENT_NOM_BASE;
for (int y = bp->height; y != 0; y--) {
const Colour *src = src_rgba_line + META_LENGTH;
Colour *dst = dst_line;
const MapValue *src_mv = src_mv_line;
switch (mode) {
default: {
switch (read_mode) {
case RM_WITH_MARGIN: {
src += src_rgba_line[0].data;
dst += src_rgba_line[0].data;
const int width_diff = si->sprite_width - bp->width;
effective_width = bp->width - (int) src_rgba_line[0].data;
const int delta_diff = (int) src_rgba_line[1].data - width_diff;
const int new_width = effective_width - (delta_diff & ~1);
effective_width = delta_diff > 0 ? new_width : effective_width;
if (effective_width <= 0) break;
/* FALLTHROUGH */
}
case RM_WITH_SKIP: {
for (uint x = (uint) effective_width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
ALPHA_BLEND_2();
_mm_storel_epi64((__m128i*) dst, srcABCD);
src += 2;
dst += 2;
}
if (bt_last == BT_ODD) {
__m128i srcABCD = _mm_cvtsi32_si128(src->data);
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
ALPHA_BLEND_2();
dst->data = _mm_cvtsi128_si32(srcABCD);
}
break;
}
default: NOT_REACHED();
}
break;
}
case BM_COLOUR_REMAP: {
switch (read_mode) {
case RM_WITH_MARGIN: {
src += src_rgba_line[0].data;
src_mv += src_rgba_line[0].data;
dst += src_rgba_line[0].data;
const int width_diff = si->sprite_width - bp->width;
effective_width = bp->width - (int) src_rgba_line[0].data;
const int delta_diff = (int) src_rgba_line[1].data - width_diff;
const int new_width = effective_width - delta_diff;
effective_width = delta_diff > 0 ? new_width : effective_width;
if (effective_width <= 0) break;
/* FALLTHROUGH */
}
case RM_WITH_SKIP: {
for (uint x = (uint) effective_width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
uint32 mvX2 = *((uint32 *) const_cast<MapValue *>(src_mv));
/* Remap colours. */
if (mvX2 & 0x00FF00FF) {
/* Written so the compiler uses CMOV. */
const Colour src0 = src[0];
const uint m0 = (byte) mvX2;
const uint r0 = remap[m0];
const Colour c0map = (this->LookupColourInPalette(r0).data & 0x00FFFFFF) | (src0.data & 0xFF000000);
Colour c0 = 0; // Use alpha of 0 to keep dst as is.
c0 = r0 == 0 ? c0 : c0map;
c0 = m0 != 0 ? c0 : src0;
INSR32(c0.data, srcABCD, 0);
const Colour src1 = src[1];
const uint m1 = (byte) (mvX2 >> 16);
const uint r1 = remap[m1];
const Colour c1map = (this->LookupColourInPalette(r1).data & 0x00FFFFFF) | (src1.data & 0xFF000000);
Colour c1 = 0;
c1 = r1 == 0 ? c1 : c1map;
c1 = m1 != 0 ? c1 : src1;
INSR32(c1.data, srcABCD, 1);
if ((mvX2 & 0xFF00FF00) != 0x80008000) {
ADJUST_BRIGHTNESS_2(srcABCD, mvX2);
}
}
/* Blend colours. */
ALPHA_BLEND_2();
_mm_storel_epi64((__m128i *) dst, srcABCD);
dst += 2;
src += 2;
src_mv += 2;
}
if (effective_width & 1) {
/* In case the m-channel is zero, do not remap this pixel in any way. */
__m128i srcABCD;
if (src_mv->m) {
const uint r = remap[src_mv->m];
if (r != 0) {
Colour remapped_colour = AdjustBrightness(this->LookupColourInPalette(r), src_mv->v);
if (src->a == 255) {
*dst = remapped_colour;
} else {
remapped_colour.a = src->a;
srcABCD = _mm_cvtsi32_si128(remapped_colour.data);
goto bmcr_alpha_blend_single;
}
}
} else {
srcABCD = _mm_cvtsi32_si128(src->data);
if (src->a < 255) {
bmcr_alpha_blend_single:
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
ALPHA_BLEND_2();
}
dst->data = _mm_cvtsi128_si32(srcABCD);
}
}
break;
}
default: NOT_REACHED();
}
src_mv_line += si->sprite_width;
break;
}
case BM_TRANSPARENT: {
/* Make the current colour a bit more black, so it looks like this image is transparent. */
for (uint x = (uint) bp->width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
DARKEN_2();
_mm_storel_epi64((__m128i *) dst, dstAB);
src += 2;
dst += 2;
}
if (bp->width & 1) {
__m128i srcABCD = _mm_cvtsi32_si128(src->data);
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
DARKEN_2();
dst->data = _mm_cvtsi128_si32(dstAB);
}
break;
}
}
src_rgba_line = (const Colour*) ((const byte*) src_rgba_line + si->sprite_line_size);
dst_line += bp->pitch;
}
}
IGNORE_UNINITIALIZED_WARNING_STOP
/**
* Draws a sprite to a (screen) buffer. Calls adequate templated function.
*
* @param bp further blitting parameters
* @param mode blitter mode
* @param zoom zoom level at which we are drawing
*/
void Blitter_32bppSSE4::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
{
const BlockType bt_last = (BlockType) (bp->width & 1);
switch (mode) {
case BM_NORMAL: {
if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) {
switch (bt_last) {
case BT_EVEN: Draw<BM_NORMAL, RM_WITH_SKIP, BT_EVEN>(bp, zoom); return;
case BT_ODD: Draw<BM_NORMAL, RM_WITH_SKIP, BT_ODD>(bp, zoom); return;
default: NOT_REACHED();
}
} else {
switch (bt_last) {
case BT_EVEN: Draw<BM_NORMAL, RM_WITH_MARGIN, BT_EVEN>(bp, zoom); return;
case BT_ODD: Draw<BM_NORMAL, RM_WITH_MARGIN, BT_ODD>(bp, zoom); return;
default: NOT_REACHED();
}
}
break;
}
case BM_COLOUR_REMAP:
if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) {
Draw<BM_COLOUR_REMAP, RM_WITH_SKIP, BT_NONE>(bp, zoom); return;
} else {
Draw<BM_COLOUR_REMAP, RM_WITH_MARGIN, BT_NONE>(bp, zoom); return;
}
case BM_TRANSPARENT: Draw<BM_TRANSPARENT, RM_NONE, BT_NONE>(bp, zoom); return;
default: NOT_REACHED();
}
}
/** Same code as seen in 32bpp_sse2.cpp but some macros are not the same. */
inline Colour Blitter_32bppSSE4::AdjustBrightness(Colour colour, uint8 brightness)
{
/* Shortcut for normal brightness. */
if (brightness == DEFAULT_BRIGHTNESS) return colour;
return Blitter_32bppSSE4::ReallyAdjustBrightness(colour, brightness);
}
IGNORE_UNINITIALIZED_WARNING_START
/* static */ Colour Blitter_32bppSSE4::ReallyAdjustBrightness(Colour colour, uint8 brightness)
{
uint64 c16 = colour.b | (uint64) colour.g << 16 | (uint64) colour.r << 32;
c16 *= brightness;
uint64 c16_ob = c16; // Helps out of order execution.
c16 /= DEFAULT_BRIGHTNESS;
c16 &= 0x01FF01FF01FF;
/* Sum overbright (maximum for each rgb is 508, 9 bits, -255 is changed in -256 so we just have to take the 8 lower bits into account). */
c16_ob = (((c16_ob >> (8 + 7)) & 0x0100010001) * 0xFF) & c16;
uint64 ob = (uint16) c16_ob + (uint16) (c16_ob >> 16) + (uint16) (c16_ob >> 32);
const uint32 alpha32 = colour.data & 0xFF000000;
__m128i ret;
INSR64(c16, ret, 0);
if (ob != 0) {
/* Reduce overbright strength. */
ob /= 2;
__m128i ob128;
INSR64(ob | ob << 16 | ob << 32, ob128, 0);
__m128i white = OVERBRIGHT_VALUE_MASK;
__m128i c128 = ret;
ret = _mm_subs_epu16(white, c128); /* PSUBUSW, (255 - rgb) */
ret = _mm_mullo_epi16(ret, ob128); /* PMULLW, ob*(255 - rgb) */
ret = _mm_srli_epi16(ret, 8); /* PSRLW, ob*(255 - rgb)/256 */
ret = _mm_add_epi16(ret, c128); /* PADDW, ob*(255 - rgb)/256 + rgb */
}
ret = _mm_packus_epi16(ret, ret); /* PACKUSWB, saturate and pack. */
return alpha32 | _mm_cvtsi128_si32(ret);
}
IGNORE_UNINITIALIZED_WARNING_STOP
#endif /* WITH_SSE */