(svn r11695) -Codechange: Converted the md5 algorithm to OOP

-Codechange: Adapt the md5 algorithm to the OpenTTD source
This commit is contained in:
skidd13 2007-12-25 13:59:21 +00:00
parent b3f6c0734b
commit 7963963d98
7 changed files with 240 additions and 312 deletions

View File

@ -25,27 +25,27 @@
/* Setup alignment and conversion macros */
#if defined(TTD_BIG_ENDIAN)
#define TO_BE32X(x) (x)
#define FROM_BE32(x) (x)
#define TO_BE32(x) (x)
#define FROM_BE16(x) (x)
#define FROM_BE32(x) (x)
#define TO_BE16(x) (x)
#define TO_BE32(x) (x)
#define TO_BE32X(x) (x)
#define FROM_LE16(x) BSWAP16(x)
#define FROM_LE32(x) BSWAP32(x)
#define TO_LE16(x) BSWAP16(x)
#define TO_LE32(x) BSWAP32(x)
#define TO_LE32X(x) BSWAP32(x)
static inline uint32 FROM_LE32(uint32 x) { return BSWAP32(x); }
static inline uint32 TO_LE32(uint32 x) { return BSWAP32(x); }
static inline uint16 FROM_LE16(uint16 x) { return BSWAP16(x); }
static inline uint16 TO_LE16(uint16 x) { return BSWAP16(x); }
#else
#define FROM_BE16(x) BSWAP16(x)
#define FROM_BE32(x) BSWAP32(x)
#define TO_BE16(x) BSWAP16(x)
#define TO_BE32(x) BSWAP32(x)
#define TO_BE32X(x) BSWAP32(x)
static inline uint32 FROM_BE32(uint32 x) { return BSWAP32(x); }
static inline uint32 TO_BE32(uint32 x) { return BSWAP32(x); }
static inline uint16 FROM_BE16(uint16 x) { return BSWAP16(x); }
static inline uint16 TO_BE16(uint16 x) { return BSWAP16(x); }
#define TO_LE32X(x) (x)
#define FROM_LE32(x) (x)
#define TO_LE32(x) (x)
#define FROM_LE16(x) (x)
#define FROM_LE32(x) (x)
#define TO_LE16(x) (x)
#define TO_LE32(x) (x)
#define TO_LE32X(x) (x)
#endif /* TTD_BIG_ENDIAN */
static inline uint16 ReadLE16Aligned(const void *x)

View File

@ -20,7 +20,7 @@
struct MD5File {
const char * filename; ///< filename
md5_byte_t hash[16]; ///< md5 sum of the file
uint8 hash[16]; ///< md5 sum of the file
};
struct FileList {
@ -108,20 +108,19 @@ static bool FileMD5(const MD5File file)
FILE *f = FioFOpenFile(file.filename, "rb", DATA_DIR, &size);
if (f != NULL) {
md5_state_t filemd5state;
md5_byte_t buffer[1024];
md5_byte_t digest[16];
Md5 checksum;
uint8 buffer[1024];
uint8 digest[16];
size_t len;
md5_init(&filemd5state);
while ((len = fread(buffer, 1, (size > sizeof(buffer)) ? sizeof(buffer) : size, f)) != 0 && size != 0) {
size -= len;
md5_append(&filemd5state, buffer, len);
checksum.Append(buffer, len);
}
FioFCloseFile(f);
md5_finish(&filemd5state, digest);
checksum.Finish(digest);
return memcmp(file.hash, digest, sizeof(file.hash)) == 0;
} else { // file not found
return false;

View File

@ -31,7 +31,7 @@
This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
@ -41,33 +41,27 @@
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):
2007-12-24 Changed to C++ and adapted to OpenTTD source
2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
either statically or dynamically; added missing #include <string.h>
in library.
either statically or dynamically; added missing #include <string.h>
in library.
2002-03-11 lpd Corrected argument list for main(), and added int return
type, in test program and T value program.
type, in test program and T value program.
2002-02-21 lpd Added missing #include <stdio.h> in test program.
2000-07-03 lpd Patched to eliminate warnings about "constant is
unsigned in ANSI C, signed in traditional"; made test program
self-checking.
unsigned in ANSI C, signed in traditional"; made test program
self-checking.
1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
1999-05-03 lpd Original version.
*/
#include "stdafx.h"
#include "core/bitmath_func.hpp"
#include "core/endian_func.hpp"
#include "md5.h"
#include <string.h>
#undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
#if defined(TTD_BIG_ENDIAN)
# define BYTE_ORDER 1
#else
# define BYTE_ORDER -1
#endif
#define T_MASK ((md5_word_t)~0)
#define T_MASK ((uint32)~0)
#define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
#define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
#define T3 0x242070db
@ -133,255 +127,197 @@
#define T63 0x2ad7d2bb
#define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
static void
md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
static inline void Md5Set1(const uint32 *X, uint32 *a, const uint32 *b, const uint32 *c, const uint32 *d, const uint8 k, const uint8 s, const uint32 Ti)
{
md5_word_t
a = pms->abcd[0], b = pms->abcd[1],
c = pms->abcd[2], d = pms->abcd[3];
md5_word_t t;
#if BYTE_ORDER > 0
/* Define storage only for big-endian CPUs. */
md5_word_t X[16];
#else
/* Define storage for little-endian or both types of CPUs. */
md5_word_t xbuf[16];
const md5_word_t *X;
#endif
uint32 t = (*b & *c) | (~*b & *d);
t += *a + X[k] + Ti;
*a = ROL(t, s) + *b;
}
{
#if BYTE_ORDER == 0
/*
* Determine dynamically whether this is a big-endian or
* little-endian machine, since we can use a more efficient
* algorithm on the latter.
*/
static const int w = 1;
static inline void Md5Set2(const uint32 *X, uint32 *a, const uint32 *b, const uint32 *c, const uint32 *d, const uint8 k, const uint8 s, const uint32 Ti)
{
uint32 t = (*b & *d) | (*c & ~*d);
t += *a + X[k] + Ti;
*a = ROL(t, s) + *b;
}
if (*((const md5_byte_t *)&w)) /* dynamic little-endian */
#endif
#if BYTE_ORDER <= 0 /* little-endian */
{
/*
* On little-endian machines, we can process properly aligned
* data without copying it.
*/
if (!((data - (const md5_byte_t *)0) & 3)) {
/* data are properly aligned */
X = (const md5_word_t *)data;
} else {
/* not aligned */
memcpy(xbuf, data, 64);
X = xbuf;
}
static inline void Md5Set3(const uint32 *X, uint32 *a, const uint32 *b, const uint32 *c, const uint32 *d, const uint8 k, const uint8 s, const uint32 Ti)
{
uint32 t = *b ^ *c ^ *d;
t += *a + X[k] + Ti;
*a = ROL(t, s) + *b;
}
static inline void Md5Set4(const uint32 *X, uint32 *a, const uint32 *b, const uint32 *c, const uint32 *d, const uint8 k, const uint8 s, const uint32 Ti)
{
uint32 t = *c ^ (*b | ~*d);
t += *a + X[k] + Ti;
*a = ROL(t, s) + *b;
}
Md5::Md5()
{
count[0] = 0;
count[1] = 0;
abcd[0] = 0x67452301;
abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
abcd[3] = 0x10325476;
}
void Md5::Process(const uint8 *data /*[64]*/)
{
uint32 a = this->abcd[0];
uint32 b = this->abcd[1];
uint32 c = this->abcd[2];
uint32 d = this->abcd[3];
uint32 X[16];
/* Convert the uint8 data to uint32 LE */
uint32 *px = (uint32 *)data;
for (uint i = 0; i < 16; i++) {
X[i] = TO_LE32(*px);
px++;
}
#endif
#if BYTE_ORDER == 0
else /* dynamic big-endian */
#endif
#if BYTE_ORDER >= 0 /* big-endian */
{
/*
* On big-endian machines, we must arrange the bytes in the
* right order.
*/
const md5_byte_t *xp = data;
int i;
# if BYTE_ORDER == 0
X = xbuf; /* (dynamic only) */
# else
# define xbuf X /* (static only) */
# endif
for (i = 0; i < 16; ++i, xp += 4)
xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
/* Round 1. */
Md5Set1(X, &a, &b, &c, &d, 0, 7, T1);
Md5Set1(X, &d, &a, &b, &c, 1, 12, T2);
Md5Set1(X, &c, &d, &a, &b, 2, 17, T3);
Md5Set1(X, &b, &c, &d, &a, 3, 22, T4);
Md5Set1(X, &a, &b, &c, &d, 4, 7, T5);
Md5Set1(X, &d, &a, &b, &c, 5, 12, T6);
Md5Set1(X, &c, &d, &a, &b, 6, 17, T7);
Md5Set1(X, &b, &c, &d, &a, 7, 22, T8);
Md5Set1(X, &a, &b, &c, &d, 8, 7, T9);
Md5Set1(X, &d, &a, &b, &c, 9, 12, T10);
Md5Set1(X, &c, &d, &a, &b, 10, 17, T11);
Md5Set1(X, &b, &c, &d, &a, 11, 22, T12);
Md5Set1(X, &a, &b, &c, &d, 12, 7, T13);
Md5Set1(X, &d, &a, &b, &c, 13, 12, T14);
Md5Set1(X, &c, &d, &a, &b, 14, 17, T15);
Md5Set1(X, &b, &c, &d, &a, 15, 22, T16);
/* Round 2. */
Md5Set2(X, &a, &b, &c, &d, 1, 5, T17);
Md5Set2(X, &d, &a, &b, &c, 6, 9, T18);
Md5Set2(X, &c, &d, &a, &b, 11, 14, T19);
Md5Set2(X, &b, &c, &d, &a, 0, 20, T20);
Md5Set2(X, &a, &b, &c, &d, 5, 5, T21);
Md5Set2(X, &d, &a, &b, &c, 10, 9, T22);
Md5Set2(X, &c, &d, &a, &b, 15, 14, T23);
Md5Set2(X, &b, &c, &d, &a, 4, 20, T24);
Md5Set2(X, &a, &b, &c, &d, 9, 5, T25);
Md5Set2(X, &d, &a, &b, &c, 14, 9, T26);
Md5Set2(X, &c, &d, &a, &b, 3, 14, T27);
Md5Set2(X, &b, &c, &d, &a, 8, 20, T28);
Md5Set2(X, &a, &b, &c, &d, 13, 5, T29);
Md5Set2(X, &d, &a, &b, &c, 2, 9, T30);
Md5Set2(X, &c, &d, &a, &b, 7, 14, T31);
Md5Set2(X, &b, &c, &d, &a, 12, 20, T32);
/* Round 3. */
Md5Set3(X, &a, &b, &c, &d, 5, 4, T33);
Md5Set3(X, &d, &a, &b, &c, 8, 11, T34);
Md5Set3(X, &c, &d, &a, &b, 11, 16, T35);
Md5Set3(X, &b, &c, &d, &a, 14, 23, T36);
Md5Set3(X, &a, &b, &c, &d, 1, 4, T37);
Md5Set3(X, &d, &a, &b, &c, 4, 11, T38);
Md5Set3(X, &c, &d, &a, &b, 7, 16, T39);
Md5Set3(X, &b, &c, &d, &a, 10, 23, T40);
Md5Set3(X, &a, &b, &c, &d, 13, 4, T41);
Md5Set3(X, &d, &a, &b, &c, 0, 11, T42);
Md5Set3(X, &c, &d, &a, &b, 3, 16, T43);
Md5Set3(X, &b, &c, &d, &a, 6, 23, T44);
Md5Set3(X, &a, &b, &c, &d, 9, 4, T45);
Md5Set3(X, &d, &a, &b, &c, 12, 11, T46);
Md5Set3(X, &c, &d, &a, &b, 15, 16, T47);
Md5Set3(X, &b, &c, &d, &a, 2, 23, T48);
/* Round 4. */
Md5Set4(X, &a, &b, &c, &d, 0, 6, T49);
Md5Set4(X, &d, &a, &b, &c, 7, 10, T50);
Md5Set4(X, &c, &d, &a, &b, 14, 15, T51);
Md5Set4(X, &b, &c, &d, &a, 5, 21, T52);
Md5Set4(X, &a, &b, &c, &d, 12, 6, T53);
Md5Set4(X, &d, &a, &b, &c, 3, 10, T54);
Md5Set4(X, &c, &d, &a, &b, 10, 15, T55);
Md5Set4(X, &b, &c, &d, &a, 1, 21, T56);
Md5Set4(X, &a, &b, &c, &d, 8, 6, T57);
Md5Set4(X, &d, &a, &b, &c, 15, 10, T58);
Md5Set4(X, &c, &d, &a, &b, 6, 15, T59);
Md5Set4(X, &b, &c, &d, &a, 13, 21, T60);
Md5Set4(X, &a, &b, &c, &d, 4, 6, T61);
Md5Set4(X, &d, &a, &b, &c, 11, 10, T62);
Md5Set4(X, &c, &d, &a, &b, 2, 15, T63);
Md5Set4(X, &b, &c, &d, &a, 9, 21, T64);
/* Then perform the following additions. (That is increment each
* of the four registers by the value it had before this block
* was started.) */
this->abcd[0] += a;
this->abcd[1] += b;
this->abcd[2] += c;
this->abcd[3] += d;
}
void Md5::Append(const void *data, const size_t nbytes)
{
const uint8 *p = (const uint8 *)data;
size_t left = nbytes;
const size_t offset = (this->count[0] >> 3) & 63;
const uint32 nbits = (uint32)(nbytes << 3);
if (nbytes <= 0) return;
/* Update the message length. */
this->count[1] += (uint32)(nbytes >> 29);
this->count[0] += nbits;
if (this->count[0] < nbits) this->count[1]++;
/* Process an initial partial block. */
if (offset) {
size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
memcpy(this->buf + offset, p, copy);
if (offset + copy < 64) return;
p += copy;
left -= copy;
this->Process(this->buf);
}
#endif
}
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
/* Process full blocks. */
for (; left >= 64; p += 64, left -= 64) this->Process(p);
/* Round 1. */
/* Let [abcd k s i] denote the operation
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define SET(a, b, c, d, k, s, Ti)\
t = a + F(b,c,d) + X[k] + Ti;\
a = ROTATE_LEFT(t, s) + b
/* Do the following 16 operations. */
SET(a, b, c, d, 0, 7, T1);
SET(d, a, b, c, 1, 12, T2);
SET(c, d, a, b, 2, 17, T3);
SET(b, c, d, a, 3, 22, T4);
SET(a, b, c, d, 4, 7, T5);
SET(d, a, b, c, 5, 12, T6);
SET(c, d, a, b, 6, 17, T7);
SET(b, c, d, a, 7, 22, T8);
SET(a, b, c, d, 8, 7, T9);
SET(d, a, b, c, 9, 12, T10);
SET(c, d, a, b, 10, 17, T11);
SET(b, c, d, a, 11, 22, T12);
SET(a, b, c, d, 12, 7, T13);
SET(d, a, b, c, 13, 12, T14);
SET(c, d, a, b, 14, 17, T15);
SET(b, c, d, a, 15, 22, T16);
#undef SET
/* Round 2. */
/* Let [abcd k s i] denote the operation
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define SET(a, b, c, d, k, s, Ti)\
t = a + G(b,c,d) + X[k] + Ti;\
a = ROTATE_LEFT(t, s) + b
/* Do the following 16 operations. */
SET(a, b, c, d, 1, 5, T17);
SET(d, a, b, c, 6, 9, T18);
SET(c, d, a, b, 11, 14, T19);
SET(b, c, d, a, 0, 20, T20);
SET(a, b, c, d, 5, 5, T21);
SET(d, a, b, c, 10, 9, T22);
SET(c, d, a, b, 15, 14, T23);
SET(b, c, d, a, 4, 20, T24);
SET(a, b, c, d, 9, 5, T25);
SET(d, a, b, c, 14, 9, T26);
SET(c, d, a, b, 3, 14, T27);
SET(b, c, d, a, 8, 20, T28);
SET(a, b, c, d, 13, 5, T29);
SET(d, a, b, c, 2, 9, T30);
SET(c, d, a, b, 7, 14, T31);
SET(b, c, d, a, 12, 20, T32);
#undef SET
/* Round 3. */
/* Let [abcd k s t] denote the operation
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define SET(a, b, c, d, k, s, Ti)\
t = a + H(b,c,d) + X[k] + Ti;\
a = ROTATE_LEFT(t, s) + b
/* Do the following 16 operations. */
SET(a, b, c, d, 5, 4, T33);
SET(d, a, b, c, 8, 11, T34);
SET(c, d, a, b, 11, 16, T35);
SET(b, c, d, a, 14, 23, T36);
SET(a, b, c, d, 1, 4, T37);
SET(d, a, b, c, 4, 11, T38);
SET(c, d, a, b, 7, 16, T39);
SET(b, c, d, a, 10, 23, T40);
SET(a, b, c, d, 13, 4, T41);
SET(d, a, b, c, 0, 11, T42);
SET(c, d, a, b, 3, 16, T43);
SET(b, c, d, a, 6, 23, T44);
SET(a, b, c, d, 9, 4, T45);
SET(d, a, b, c, 12, 11, T46);
SET(c, d, a, b, 15, 16, T47);
SET(b, c, d, a, 2, 23, T48);
#undef SET
/* Round 4. */
/* Let [abcd k s t] denote the operation
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
#define SET(a, b, c, d, k, s, Ti)\
t = a + I(b,c,d) + X[k] + Ti;\
a = ROTATE_LEFT(t, s) + b
/* Do the following 16 operations. */
SET(a, b, c, d, 0, 6, T49);
SET(d, a, b, c, 7, 10, T50);
SET(c, d, a, b, 14, 15, T51);
SET(b, c, d, a, 5, 21, T52);
SET(a, b, c, d, 12, 6, T53);
SET(d, a, b, c, 3, 10, T54);
SET(c, d, a, b, 10, 15, T55);
SET(b, c, d, a, 1, 21, T56);
SET(a, b, c, d, 8, 6, T57);
SET(d, a, b, c, 15, 10, T58);
SET(c, d, a, b, 6, 15, T59);
SET(b, c, d, a, 13, 21, T60);
SET(a, b, c, d, 4, 6, T61);
SET(d, a, b, c, 11, 10, T62);
SET(c, d, a, b, 2, 15, T63);
SET(b, c, d, a, 9, 21, T64);
#undef SET
/* Then perform the following additions. (That is increment each
of the four registers by the value it had before this block
was started.) */
pms->abcd[0] += a;
pms->abcd[1] += b;
pms->abcd[2] += c;
pms->abcd[3] += d;
/* Process a final partial block. */
if (left) memcpy(this->buf, p, left);
}
void
md5_init(md5_state_t *pms)
void Md5::Finish(uint8 digest[16])
{
pms->count[0] = pms->count[1] = 0;
pms->abcd[0] = 0x67452301;
pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
pms->abcd[3] = 0x10325476;
}
void
md5_append(md5_state_t *pms, const void *data, size_t nbytes)
{
const md5_byte_t *p = (const md5_byte_t *)data;
size_t left = nbytes;
size_t offset = (pms->count[0] >> 3) & 63;
md5_word_t nbits = (md5_word_t)(nbytes << 3);
if (nbytes <= 0)
return;
/* Update the message length. */
pms->count[1] += (md5_word_t)(nbytes >> 29);
pms->count[0] += nbits;
if (pms->count[0] < nbits)
pms->count[1]++;
/* Process an initial partial block. */
if (offset) {
size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
memcpy(pms->buf + offset, p, copy);
if (offset + copy < 64)
return;
p += copy;
left -= copy;
md5_process(pms, pms->buf);
}
/* Process full blocks. */
for (; left >= 64; p += 64, left -= 64)
md5_process(pms, p);
/* Process a final partial block. */
if (left)
memcpy(pms->buf, p, left);
}
void
md5_finish(md5_state_t *pms, md5_byte_t digest[16])
{
static const md5_byte_t pad[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
md5_byte_t data[8];
int i;
/* Save the length before padding. */
for (i = 0; i < 8; ++i)
data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
/* Pad to 56 bytes mod 64. */
md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
/* Append the length. */
md5_append(pms, data, 8);
for (i = 0; i < 16; ++i)
digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
static const uint8 pad[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
uint8 data[8];
uint i;
/* Save the length before padding. */
for (i = 0; i < 8; ++i)
data[i] = (uint8)(this->count[i >> 2] >> ((i & 3) << 3));
/* Pad to 56 bytes mod 64. */
this->Append(pad, ((55 - (this->count[0] >> 3)) & 63) + 1);
/* Append the length. */
this->Append(data, 8);
for (i = 0; i < 16; ++i)
digest[i] = (uint8)(this->abcd[i >> 2] >> ((i & 3) << 3));
}

View File

@ -31,7 +31,7 @@
This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
@ -41,13 +41,14 @@
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):
2007-12-24 Changed to C++ and adapted to OpenTTD source
2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 lpd Original version.
*/
@ -64,23 +65,18 @@
* efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
*/
typedef unsigned char md5_byte_t; /* 8-bit byte */
typedef unsigned int md5_word_t; /* 32-bit word */
struct Md5 {
private:
uint32 count[2]; ///< message length in bits, lsw first
uint32 abcd[4]; ///< digest buffer
uint8 buf[64]; ///< accumulate block
/* Define the state of the MD5 Algorithm. */
struct md5_state_t {
md5_word_t count[2]; /* message length in bits, lsw first */
md5_word_t abcd[4]; /* digest buffer */
md5_byte_t buf[64]; /* accumulate block */
void Process(const uint8 *data);
public:
Md5();
void Append(const void *data, const size_t nbytes);
void Finish(uint8 digest[16]);
};
/* Initialize the algorithm. */
void md5_init(md5_state_t *pms);
/* Append a string to the message. */
void md5_append(md5_state_t *pms, const void *data, size_t nbytes);
/* Finish the message and return the digest. */
void md5_finish(md5_state_t *pms, md5_byte_t digest[16]);
#endif /* MD5_INCLUDED */

View File

@ -1352,8 +1352,8 @@ void NetworkGameLoop()
static void NetworkGenerateUniqueId()
{
md5_state_t state;
md5_byte_t digest[16];
Md5 checksum;
uint8 digest[16];
char hex_output[16*2 + 1];
char coding_string[NETWORK_NAME_LENGTH];
int di;
@ -1361,9 +1361,8 @@ static void NetworkGenerateUniqueId()
snprintf(coding_string, sizeof(coding_string), "%d%s", (uint)Random(), "OpenTTD Unique ID");
/* Generate the MD5 hash */
md5_init(&state);
md5_append(&state, (const md5_byte_t*)coding_string, strlen(coding_string));
md5_finish(&state, digest);
checksum.Append((const uint8*)coding_string, strlen(coding_string));
checksum.Finish(digest);
for (di = 0; di < 16; ++di)
sprintf(hex_output + di * 2, "%02x", digest[di]);

View File

@ -56,14 +56,13 @@ static const char *GenerateCompanyPasswordHash(const char *password)
/* Add the game seed and the server's unique ID as the salt. */
for (uint i = 0; i < NETWORK_UNIQUE_ID_LENGTH; i++) salted_password[i] ^= _password_server_unique_id[i] ^ (_password_game_seed >> i);
md5_state_t state;
md5_byte_t digest[16];
Md5 checksum;
uint8 digest[16];
static char hashed_password[NETWORK_UNIQUE_ID_LENGTH];
/* Generate the MD5 hash */
md5_init(&state);
md5_append(&state, (const md5_byte_t*)salted_password, sizeof(salted_password));
md5_finish(&state, digest);
checksum.Append((const uint8*)salted_password, sizeof(salted_password));
checksum.Finish(digest);
for (int di = 0; di < 16; di++) sprintf(hashed_password + di * 2, "%02x", digest[di]);

View File

@ -32,8 +32,8 @@ GRFConfig *_grfconfig_static;
static bool CalcGRFMD5Sum(GRFConfig *config)
{
FILE *f;
md5_state_t md5state;
md5_byte_t buffer[1024];
Md5 checksum;
uint8 buffer[1024];
size_t len, size;
/* open the file */
@ -41,12 +41,11 @@ static bool CalcGRFMD5Sum(GRFConfig *config)
if (f == NULL) return false;
/* calculate md5sum */
md5_init(&md5state);
while ((len = fread(buffer, 1, (size > sizeof(buffer)) ? sizeof(buffer) : size, f)) != 0 && size != 0) {
size -= len;
md5_append(&md5state, buffer, len);
checksum.Append(buffer, len);
}
md5_finish(&md5state, config->md5sum);
checksum.Finish(config->md5sum);
FioFCloseFile(f);