/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file math_func.hpp Integer math functions */ #ifndef MATH_FUNC_HPP #define MATH_FUNC_HPP #include "strong_typedef_type.hpp" /** * Returns the absolute value of (scalar) variable. * * @note assumes variable to be signed * @param a The value we want to unsign * @return The unsigned value */ template constexpr T abs(const T a) { return (a < static_cast(0)) ? -a : a; } /** * Return the smallest multiple of n equal or greater than x * * @note n must be a power of 2 * @param x The min value * @param n The base of the number we are searching * @return The smallest multiple of n equal or greater than x */ template constexpr T Align(const T x, uint n) { assert((n & (n - 1)) == 0 && n != 0); n--; return static_cast((x + n) & ~static_cast(n)); } /** * Return the smallest multiple of n equal or greater than x * Applies to pointers only * * @note n must be a power of 2 * @param x The min value * @param n The base of the number we are searching * @return The smallest multiple of n equal or greater than x * @see Align() */ template constexpr T *AlignPtr(T *x, uint n) { static_assert(sizeof(uintptr_t) == sizeof(void *)); return reinterpret_cast(Align(reinterpret_cast(x), n)); } /** * Clamp a value between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see ClampU(uint, uint, uint) * @see Clamp(int, int, int) */ template constexpr T Clamp(const T a, const T min, const T max) { assert(min <= max); if (a <= min) return min; if (a >= max) return max; return a; } /** * Clamp a value between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note If the min value is greater than the max, return value is the average of the min and max. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. */ template constexpr T SoftClamp(const T a, const T min, const T max) { if (min > max) { using U = std::make_unsigned_t; return min - (U(min) - max) / 2; } if (a <= min) return min; if (a >= max) return max; return a; } /** * Clamp an integer between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see ClampU(uint, uint, uint) */ constexpr int Clamp(const int a, const int min, const int max) { return Clamp(a, min, max); } /** * Clamp an unsigned integer between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see Clamp(int, int, int) */ constexpr uint ClampU(const uint a, const uint min, const uint max) { return Clamp(a, min, max); } /** * Clamp the given value down to lie within the requested type. * * For example ClampTo will return a value clamped to the range of 0 * to 255. Anything smaller will become 0, anything larger will become 255. * * @param a The 64-bit value to clamp. * @return The 64-bit value reduced to a value within the given allowed range * for the return type. * @see Clamp(int, int, int) */ template ::value, int> = 0> constexpr To ClampTo(From value) { static_assert(std::numeric_limits::is_integer, "Do not clamp from non-integer values"); static_assert(std::numeric_limits::is_integer, "Do not clamp to non-integer values"); if constexpr (sizeof(To) >= sizeof(From) && std::numeric_limits::is_signed == std::numeric_limits::is_signed) { /* Same signedness and To type is larger or equal than From type, no clamping is required. */ return static_cast(value); } if constexpr (sizeof(To) > sizeof(From) && std::numeric_limits::is_signed) { /* Signed destination and a larger To type, no clamping is required. */ return static_cast(value); } /* Get the bigger of the two types based on essentially the number of bits. */ using BiggerType = typename std::conditional= sizeof(To), From, To>::type; if constexpr (std::numeric_limits::is_signed) { /* The output is a signed number. */ if constexpr (std::numeric_limits::is_signed) { /* Both input and output are signed. */ return static_cast(std::clamp(value, std::numeric_limits::lowest(), std::numeric_limits::max())); } /* The input is unsigned, so skip the minimum check and use unsigned variant of the biggest type as intermediate type. */ using BiggerUnsignedType = typename std::make_unsigned::type; return static_cast(std::min(std::numeric_limits::max(), value)); } /* The output is unsigned. */ if constexpr (std::numeric_limits::is_signed) { /* Input is signed; account for the negative numbers in the input. */ if constexpr (sizeof(To) >= sizeof(From)) { /* If the output type is larger or equal to the input type, then only clamp the negative numbers. */ return static_cast(std::max(value, 0)); } /* The output type is smaller than the input type. */ using BiggerSignedType = typename std::make_signed::type; return static_cast(std::clamp(value, std::numeric_limits::lowest(), std::numeric_limits::max())); } /* The input and output are unsigned, just clamp at the high side. */ return static_cast(std::min(value, std::numeric_limits::max())); } /** * Specialization of ClampTo for #StrongType::Typedef. */ template ::value, int> = 0> constexpr To ClampTo(From value) { return ClampTo(value.base()); } /** * Returns the (absolute) difference between two (scalar) variables * * @param a The first scalar * @param b The second scalar * @return The absolute difference between the given scalars */ template constexpr T Delta(const T a, const T b) { return (a < b) ? b - a : a - b; } /** * Checks if a value is between a window started at some base point. * * This function checks if the value x is between the value of base * and base+size. If x equals base this returns true. If x equals * base+size this returns false. * * @param x The value to check * @param base The base value of the interval * @param size The size of the interval * @return True if the value is in the interval, false else. */ template constexpr bool IsInsideBS(const T x, const size_t base, const size_t size) { return static_cast(x - base) < size; } /** * Checks if a value is in an interval. * * Returns true if a value is in the interval of [min, max). * * @param x The value to check * @param min The minimum of the interval * @param max The maximum of the interval * @see IsInsideBS() */ template , std::is_base_of>, int> = 0> constexpr bool IsInsideMM(const T x, const size_t min, const size_t max) noexcept { if constexpr (std::is_base_of_v) { return static_cast(x.base() - min) < (max - min); } else { return static_cast(x - min) < (max - min); } } /** * Type safe swap operation * @param a variable to swap with b * @param b variable to swap with a */ template constexpr void Swap(T &a, T &b) { T t = a; a = b; b = t; } /** * Converts a "fract" value 0..255 to "percent" value 0..100 * @param i value to convert, range 0..255 * @return value in range 0..100 */ constexpr uint ToPercent8(uint i) { assert(i < 256); return i * 101 >> 8; } /** * Converts a "fract" value 0..65535 to "percent" value 0..100 * @param i value to convert, range 0..65535 * @return value in range 0..100 */ constexpr uint ToPercent16(uint i) { assert(i < 65536); return i * 101 >> 16; } int DivideApprox(int a, int b); /** * Computes ceil(a / b) for non-negative a and b. * @param a Numerator * @param b Denominator * @return Quotient, rounded up */ constexpr uint CeilDiv(uint a, uint b) { return (a + b - 1) / b; } /** * Computes ceil(a / b) * b for non-negative a and b. * @param a Numerator * @param b Denominator * @return a rounded up to the nearest multiple of b. */ constexpr uint Ceil(uint a, uint b) { return CeilDiv(a, b) * b; } /** * Computes round(a / b) for signed a and unsigned b. * @param a Numerator * @param b Denominator * @return Quotient, rounded to nearest */ constexpr int RoundDivSU(int a, uint b) { if (a > 0) { /* 0.5 is rounded to 1 */ return (a + static_cast(b) / 2) / static_cast(b); } else { /* -0.5 is rounded to 0 */ return (a - (static_cast(b) - 1) / 2) / static_cast(b); } } /** * Computes ten to the given power. * @param power The power of ten to get. * @return The power of ten. */ constexpr uint64_t PowerOfTen(int power) { assert(power >= 0 && power <= 20 /* digits in uint64_t */); uint64_t result = 1; for (int i = 0; i < power; i++) result *= 10; return result; } uint32_t IntSqrt(uint32_t num); #endif /* MATH_FUNC_HPP */