/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file spritecache.cpp Caching of sprites. */ #include "stdafx.h" #include "random_access_file_type.h" #include "spriteloader/grf.hpp" #include "gfx_func.h" #include "error.h" #include "error_func.h" #include "zoom_func.h" #include "settings_type.h" #include "blitter/factory.hpp" #include "core/math_func.hpp" #include "core/mem_func.hpp" #include "video/video_driver.hpp" #include "spritecache.h" #include "spritecache_internal.h" #include "table/sprites.h" #include "table/strings.h" #include "table/palette_convert.h" #include "safeguards.h" /* Default of 4MB spritecache */ uint _sprite_cache_size = 4; static uint _spritecache_items = 0; static SpriteCache *_spritecache = nullptr; static std::vector> _sprite_files; static inline SpriteCache *GetSpriteCache(uint index) { return &_spritecache[index]; } SpriteCache *AllocateSpriteCache(uint index) { if (index >= _spritecache_items) { /* Add another 1024 items to the 'pool' */ uint items = Align(index + 1, 1024); Debug(sprite, 4, "Increasing sprite cache to {} items ({} bytes)", items, items * sizeof(*_spritecache)); _spritecache = ReallocT(_spritecache, items); /* Reset the new items and update the count */ memset(_spritecache + _spritecache_items, 0, (items - _spritecache_items) * sizeof(*_spritecache)); _spritecache_items = items; } return GetSpriteCache(index); } /** * Get the cached SpriteFile given the name of the file. * @param filename The name of the file at the disk. * @return The SpriteFile or \c null. */ static SpriteFile *GetCachedSpriteFileByName(const std::string &filename) { for (auto &f : _sprite_files) { if (f->GetFilename() == filename) { return f.get(); } } return nullptr; } /** * Get the list of cached SpriteFiles. * @return Read-only list of cache SpriteFiles. */ std::span> GetCachedSpriteFiles() { return _sprite_files; } /** * Open/get the SpriteFile that is cached for use in the sprite cache. * @param filename Name of the file at the disk. * @param subdir The sub directory to search this file in. * @param palette_remap Whether a palette remap needs to be performed for this file. * @return The reference to the SpriteCache. */ SpriteFile &OpenCachedSpriteFile(const std::string &filename, Subdirectory subdir, bool palette_remap) { SpriteFile *file = GetCachedSpriteFileByName(filename); if (file == nullptr) { file = _sprite_files.insert(std::end(_sprite_files), std::make_unique(filename, subdir, palette_remap))->get(); } else { file->SeekToBegin(); } return *file; } struct MemBlock { size_t size; uint8_t data[]; }; static uint _sprite_lru_counter; static MemBlock *_spritecache_ptr; static uint _allocated_sprite_cache_size = 0; static int _compact_cache_counter; static void CompactSpriteCache(); /** * Skip the given amount of sprite graphics data. * @param type the type of sprite (compressed etc) * @param num the amount of sprites to skip * @return true if the data could be correctly skipped. */ bool SkipSpriteData(SpriteFile &file, uint8_t type, uint16_t num) { if (type & 2) { file.SkipBytes(num); } else { while (num > 0) { int8_t i = file.ReadByte(); if (i >= 0) { int size = (i == 0) ? 0x80 : i; if (size > num) return false; num -= size; file.SkipBytes(size); } else { i = -(i >> 3); num -= i; file.ReadByte(); } } } return true; } /* Check if the given Sprite ID exists */ bool SpriteExists(SpriteID id) { if (id >= _spritecache_items) return false; /* Special case for Sprite ID zero -- its position is also 0... */ if (id == 0) return true; return !(GetSpriteCache(id)->file_pos == 0 && GetSpriteCache(id)->file == nullptr); } /** * Get the sprite type of a given sprite. * @param sprite The sprite to look at. * @return the type of sprite. */ SpriteType GetSpriteType(SpriteID sprite) { if (!SpriteExists(sprite)) return SpriteType::Invalid; return GetSpriteCache(sprite)->type; } /** * Get the SpriteFile of a given sprite. * @param sprite The sprite to look at. * @return The SpriteFile. */ SpriteFile *GetOriginFile(SpriteID sprite) { if (!SpriteExists(sprite)) return nullptr; return GetSpriteCache(sprite)->file; } /** * Get the GRF-local sprite id of a given sprite. * @param sprite The sprite to look at. * @return The GRF-local sprite id. */ uint32_t GetSpriteLocalID(SpriteID sprite) { if (!SpriteExists(sprite)) return 0; return GetSpriteCache(sprite)->id; } /** * Count the sprites which originate from a specific file in a range of SpriteIDs. * @param file The loaded SpriteFile. * @param begin First sprite in range. * @param end First sprite not in range. * @return Number of sprites. */ uint GetSpriteCountForFile(const std::string &filename, SpriteID begin, SpriteID end) { SpriteFile *file = GetCachedSpriteFileByName(filename); if (file == nullptr) return 0; uint count = 0; for (SpriteID i = begin; i != end; i++) { if (SpriteExists(i)) { SpriteCache *sc = GetSpriteCache(i); if (sc->file == file) { count++; Debug(sprite, 4, "Sprite: {}", i); } } } return count; } /** * Get a reasonable (upper bound) estimate of the maximum * SpriteID used in OpenTTD; there will be no sprites with * a higher SpriteID, although there might be up to roughly * a thousand unused SpriteIDs below this number. * @note It's actually the number of spritecache items. * @return maximum SpriteID */ uint GetMaxSpriteID() { return _spritecache_items; } static bool ResizeSpriteIn(SpriteLoader::SpriteCollection &sprite, ZoomLevel src, ZoomLevel tgt) { uint8_t scaled_1 = ScaleByZoom(1, (ZoomLevel)(src - tgt)); /* Check for possible memory overflow. */ if (sprite[src].width * scaled_1 > UINT16_MAX || sprite[src].height * scaled_1 > UINT16_MAX) return false; sprite[tgt].width = sprite[src].width * scaled_1; sprite[tgt].height = sprite[src].height * scaled_1; sprite[tgt].x_offs = sprite[src].x_offs * scaled_1; sprite[tgt].y_offs = sprite[src].y_offs * scaled_1; sprite[tgt].colours = sprite[src].colours; sprite[tgt].AllocateData(tgt, static_cast(sprite[tgt].width) * sprite[tgt].height); SpriteLoader::CommonPixel *dst = sprite[tgt].data; for (int y = 0; y < sprite[tgt].height; y++) { const SpriteLoader::CommonPixel *src_ln = &sprite[src].data[y / scaled_1 * sprite[src].width]; for (int x = 0; x < sprite[tgt].width; x++) { *dst = src_ln[x / scaled_1]; dst++; } } return true; } static void ResizeSpriteOut(SpriteLoader::SpriteCollection &sprite, ZoomLevel zoom) { /* Algorithm based on 32bpp_Optimized::ResizeSprite() */ sprite[zoom].width = UnScaleByZoom(sprite[ZOOM_LVL_MIN].width, zoom); sprite[zoom].height = UnScaleByZoom(sprite[ZOOM_LVL_MIN].height, zoom); sprite[zoom].x_offs = UnScaleByZoom(sprite[ZOOM_LVL_MIN].x_offs, zoom); sprite[zoom].y_offs = UnScaleByZoom(sprite[ZOOM_LVL_MIN].y_offs, zoom); sprite[zoom].colours = sprite[ZOOM_LVL_MIN].colours; sprite[zoom].AllocateData(zoom, static_cast(sprite[zoom].height) * sprite[zoom].width); SpriteLoader::CommonPixel *dst = sprite[zoom].data; const SpriteLoader::CommonPixel *src = sprite[zoom - 1].data; [[maybe_unused]] const SpriteLoader::CommonPixel *src_end = src + sprite[zoom - 1].height * sprite[zoom - 1].width; for (uint y = 0; y < sprite[zoom].height; y++) { const SpriteLoader::CommonPixel *src_ln = src + sprite[zoom - 1].width; assert(src_ln <= src_end); for (uint x = 0; x < sprite[zoom].width; x++) { assert(src < src_ln); if (src + 1 != src_ln && (src + 1)->a != 0) { *dst = *(src + 1); } else { *dst = *src; } dst++; src += 2; } src = src_ln + sprite[zoom - 1].width; } } static bool PadSingleSprite(SpriteLoader::Sprite *sprite, ZoomLevel zoom, uint pad_left, uint pad_top, uint pad_right, uint pad_bottom) { uint width = sprite->width + pad_left + pad_right; uint height = sprite->height + pad_top + pad_bottom; if (width > UINT16_MAX || height > UINT16_MAX) return false; /* Copy source data and reallocate sprite memory. */ size_t sprite_size = static_cast(sprite->width) * sprite->height; SpriteLoader::CommonPixel *src_data = MallocT(sprite_size); MemCpyT(src_data, sprite->data, sprite_size); sprite->AllocateData(zoom, static_cast(width) * height); /* Copy with padding to destination. */ SpriteLoader::CommonPixel *src = src_data; SpriteLoader::CommonPixel *data = sprite->data; for (uint y = 0; y < height; y++) { if (y < pad_top || pad_bottom + y >= height) { /* Top/bottom padding. */ MemSetT(data, 0, width); data += width; } else { if (pad_left > 0) { /* Pad left. */ MemSetT(data, 0, pad_left); data += pad_left; } /* Copy pixels. */ MemCpyT(data, src, sprite->width); src += sprite->width; data += sprite->width; if (pad_right > 0) { /* Pad right. */ MemSetT(data, 0, pad_right); data += pad_right; } } } free(src_data); /* Update sprite size. */ sprite->width = width; sprite->height = height; sprite->x_offs -= pad_left; sprite->y_offs -= pad_top; return true; } static bool PadSprites(SpriteLoader::SpriteCollection &sprite, uint8_t sprite_avail, SpriteEncoder *encoder) { /* Get minimum top left corner coordinates. */ int min_xoffs = INT32_MAX; int min_yoffs = INT32_MAX; for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) { if (HasBit(sprite_avail, zoom)) { min_xoffs = std::min(min_xoffs, ScaleByZoom(sprite[zoom].x_offs, zoom)); min_yoffs = std::min(min_yoffs, ScaleByZoom(sprite[zoom].y_offs, zoom)); } } /* Get maximum dimensions taking necessary padding at the top left into account. */ int max_width = INT32_MIN; int max_height = INT32_MIN; for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) { if (HasBit(sprite_avail, zoom)) { max_width = std::max(max_width, ScaleByZoom(sprite[zoom].width + sprite[zoom].x_offs - UnScaleByZoom(min_xoffs, zoom), zoom)); max_height = std::max(max_height, ScaleByZoom(sprite[zoom].height + sprite[zoom].y_offs - UnScaleByZoom(min_yoffs, zoom), zoom)); } } /* Align height and width if required to match the needs of the sprite encoder. */ uint align = encoder->GetSpriteAlignment(); if (align != 0) { max_width = Align(max_width, align); max_height = Align(max_height, align); } /* Pad sprites where needed. */ for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) { if (HasBit(sprite_avail, zoom)) { /* Scaling the sprite dimensions in the blitter is done with rounding up, * so a negative padding here is not an error. */ int pad_left = std::max(0, sprite[zoom].x_offs - UnScaleByZoom(min_xoffs, zoom)); int pad_top = std::max(0, sprite[zoom].y_offs - UnScaleByZoom(min_yoffs, zoom)); int pad_right = std::max(0, UnScaleByZoom(max_width, zoom) - sprite[zoom].width - pad_left); int pad_bottom = std::max(0, UnScaleByZoom(max_height, zoom) - sprite[zoom].height - pad_top); if (pad_left > 0 || pad_right > 0 || pad_top > 0 || pad_bottom > 0) { if (!PadSingleSprite(&sprite[zoom], zoom, pad_left, pad_top, pad_right, pad_bottom)) return false; } } } return true; } static bool ResizeSprites(SpriteLoader::SpriteCollection &sprite, uint8_t sprite_avail, SpriteEncoder *encoder) { /* Create a fully zoomed image if it does not exist */ ZoomLevel first_avail = static_cast(FindFirstBit(sprite_avail)); if (first_avail != ZOOM_LVL_MIN) { if (!ResizeSpriteIn(sprite, first_avail, ZOOM_LVL_MIN)) return false; SetBit(sprite_avail, ZOOM_LVL_MIN); } /* Pad sprites to make sizes match. */ if (!PadSprites(sprite, sprite_avail, encoder)) return false; /* Create other missing zoom levels */ for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_END; zoom++) { if (zoom == ZOOM_LVL_MIN) continue; if (HasBit(sprite_avail, zoom)) { /* Check that size and offsets match the fully zoomed image. */ assert(sprite[zoom].width == UnScaleByZoom(sprite[ZOOM_LVL_MIN].width, zoom)); assert(sprite[zoom].height == UnScaleByZoom(sprite[ZOOM_LVL_MIN].height, zoom)); assert(sprite[zoom].x_offs == UnScaleByZoom(sprite[ZOOM_LVL_MIN].x_offs, zoom)); assert(sprite[zoom].y_offs == UnScaleByZoom(sprite[ZOOM_LVL_MIN].y_offs, zoom)); } /* Zoom level is not available, or unusable, so create it */ if (!HasBit(sprite_avail, zoom)) ResizeSpriteOut(sprite, zoom); } /* Upscale to desired sprite_min_zoom if provided sprite only had zoomed in versions. */ if (first_avail < _settings_client.gui.sprite_zoom_min) { if (_settings_client.gui.sprite_zoom_min >= ZOOM_LVL_NORMAL) ResizeSpriteIn(sprite, ZOOM_LVL_NORMAL, ZOOM_LVL_IN_2X); if (_settings_client.gui.sprite_zoom_min >= ZOOM_LVL_IN_2X) ResizeSpriteIn(sprite, ZOOM_LVL_IN_2X, ZOOM_LVL_IN_4X); } return true; } /** * Load a recolour sprite into memory. * @param file GRF we're reading from. * @param num Size of the sprite in the GRF. * @return Sprite data. */ static void *ReadRecolourSprite(SpriteFile &file, uint num) { /* "Normal" recolour sprites are ALWAYS 257 bytes. Then there is a small * number of recolour sprites that are 17 bytes that only exist in DOS * GRFs which are the same as 257 byte recolour sprites, but with the last * 240 bytes zeroed. */ static const uint RECOLOUR_SPRITE_SIZE = 257; uint8_t *dest = (uint8_t *)AllocSprite(std::max(RECOLOUR_SPRITE_SIZE, num)); if (file.NeedsPaletteRemap()) { uint8_t *dest_tmp = new uint8_t[std::max(RECOLOUR_SPRITE_SIZE, num)]; /* Only a few recolour sprites are less than 257 bytes */ if (num < RECOLOUR_SPRITE_SIZE) memset(dest_tmp, 0, RECOLOUR_SPRITE_SIZE); file.ReadBlock(dest_tmp, num); /* The data of index 0 is never used; "literal 00" according to the (New)GRF specs. */ for (uint i = 1; i < RECOLOUR_SPRITE_SIZE; i++) { dest[i] = _palmap_w2d[dest_tmp[_palmap_d2w[i - 1] + 1]]; } delete[] dest_tmp; } else { file.ReadBlock(dest, num); } return dest; } /** * Read a sprite from disk. * @param sc Location of sprite. * @param id Sprite number. * @param sprite_type Type of sprite. * @param allocator Allocator function to use. * @param encoder Sprite encoder to use. * @return Read sprite data. */ static void *ReadSprite(const SpriteCache *sc, SpriteID id, SpriteType sprite_type, AllocatorProc *allocator, SpriteEncoder *encoder) { /* Use current blitter if no other sprite encoder is given. */ if (encoder == nullptr) encoder = BlitterFactory::GetCurrentBlitter(); SpriteFile &file = *sc->file; size_t file_pos = sc->file_pos; assert(sprite_type != SpriteType::Recolour); assert(IsMapgenSpriteID(id) == (sprite_type == SpriteType::MapGen)); assert(sc->type == sprite_type); Debug(sprite, 9, "Load sprite {}", id); SpriteLoader::SpriteCollection sprite; uint8_t sprite_avail = 0; sprite[ZOOM_LVL_MIN].type = sprite_type; SpriteLoaderGrf sprite_loader(file.GetContainerVersion()); if (sprite_type != SpriteType::MapGen && encoder->Is32BppSupported()) { /* Try for 32bpp sprites first. */ sprite_avail = sprite_loader.LoadSprite(sprite, file, file_pos, sprite_type, true, sc->control_flags); } if (sprite_avail == 0) { sprite_avail = sprite_loader.LoadSprite(sprite, file, file_pos, sprite_type, false, sc->control_flags); } if (sprite_avail == 0) { if (sprite_type == SpriteType::MapGen) return nullptr; if (id == SPR_IMG_QUERY) UserError("Okay... something went horribly wrong. I couldn't load the fallback sprite. What should I do?"); return (void*)GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, allocator, encoder); } if (sprite_type == SpriteType::MapGen) { /* Ugly hack to work around the problem that the old landscape * generator assumes that those sprites are stored uncompressed in * the memory, and they are only read directly by the code, never * send to the blitter. So do not send it to the blitter (which will * result in a data array in the format the blitter likes most), but * extract the data directly and store that as sprite. * Ugly: yes. Other solution: no. Blame the original author or * something ;) The image should really have been a data-stream * (so type = 0xFF basically). */ uint num = sprite[ZOOM_LVL_MIN].width * sprite[ZOOM_LVL_MIN].height; Sprite *s = (Sprite *)allocator(sizeof(*s) + num); s->width = sprite[ZOOM_LVL_MIN].width; s->height = sprite[ZOOM_LVL_MIN].height; s->x_offs = sprite[ZOOM_LVL_MIN].x_offs; s->y_offs = sprite[ZOOM_LVL_MIN].y_offs; SpriteLoader::CommonPixel *src = sprite[ZOOM_LVL_MIN].data; uint8_t *dest = s->data; while (num-- > 0) { *dest++ = src->m; src++; } return s; } if (!ResizeSprites(sprite, sprite_avail, encoder)) { if (id == SPR_IMG_QUERY) UserError("Okay... something went horribly wrong. I couldn't resize the fallback sprite. What should I do?"); return (void*)GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, allocator, encoder); } if (sprite[ZOOM_LVL_MIN].type == SpriteType::Font && _font_zoom != ZOOM_LVL_MIN) { /* Make ZOOM_LVL_MIN be ZOOM_LVL_GUI */ sprite[ZOOM_LVL_MIN].width = sprite[_font_zoom].width; sprite[ZOOM_LVL_MIN].height = sprite[_font_zoom].height; sprite[ZOOM_LVL_MIN].x_offs = sprite[_font_zoom].x_offs; sprite[ZOOM_LVL_MIN].y_offs = sprite[_font_zoom].y_offs; sprite[ZOOM_LVL_MIN].data = sprite[_font_zoom].data; sprite[ZOOM_LVL_MIN].colours = sprite[_font_zoom].colours; } return encoder->Encode(sprite, allocator); } struct GrfSpriteOffset { size_t file_pos; uint8_t control_flags; }; /** Map from sprite numbers to position in the GRF file. */ static std::map _grf_sprite_offsets; /** * Get the file offset for a specific sprite in the sprite section of a GRF. * @param id ID of the sprite to look up. * @return Position of the sprite in the sprite section or SIZE_MAX if no such sprite is present. */ size_t GetGRFSpriteOffset(uint32_t id) { return _grf_sprite_offsets.find(id) != _grf_sprite_offsets.end() ? _grf_sprite_offsets[id].file_pos : SIZE_MAX; } /** * Parse the sprite section of GRFs. * @param container_version Container version of the GRF we're currently processing. */ void ReadGRFSpriteOffsets(SpriteFile &file) { _grf_sprite_offsets.clear(); if (file.GetContainerVersion() >= 2) { /* Seek to sprite section of the GRF. */ size_t data_offset = file.ReadDword(); size_t old_pos = file.GetPos(); file.SeekTo(data_offset, SEEK_CUR); GrfSpriteOffset offset = { 0, 0 }; /* Loop over all sprite section entries and store the file * offset for each newly encountered ID. */ uint32_t id, prev_id = 0; while ((id = file.ReadDword()) != 0) { if (id != prev_id) { _grf_sprite_offsets[prev_id] = offset; offset.file_pos = file.GetPos() - 4; offset.control_flags = 0; } prev_id = id; uint length = file.ReadDword(); if (length > 0) { uint8_t colour = file.ReadByte() & SCC_MASK; length--; if (length > 0) { uint8_t zoom = file.ReadByte(); length--; if (colour != 0 && zoom == 0) { // ZOOM_LVL_NORMAL (normal zoom) SetBit(offset.control_flags, (colour != SCC_PAL) ? SCCF_ALLOW_ZOOM_MIN_1X_32BPP : SCCF_ALLOW_ZOOM_MIN_1X_PAL); SetBit(offset.control_flags, (colour != SCC_PAL) ? SCCF_ALLOW_ZOOM_MIN_2X_32BPP : SCCF_ALLOW_ZOOM_MIN_2X_PAL); } if (colour != 0 && zoom == 2) { // ZOOM_LVL_IN_2X (2x zoomed in) SetBit(offset.control_flags, (colour != SCC_PAL) ? SCCF_ALLOW_ZOOM_MIN_2X_32BPP : SCCF_ALLOW_ZOOM_MIN_2X_PAL); } } } file.SkipBytes(length); } if (prev_id != 0) _grf_sprite_offsets[prev_id] = offset; /* Continue processing the data section. */ file.SeekTo(old_pos, SEEK_SET); } } /** * Load a real or recolour sprite. * @param load_index Global sprite index. * @param file GRF to load from. * @param file_sprite_id Sprite number in the GRF. * @param container_version Container version of the GRF. * @return True if a valid sprite was loaded, false on any error. */ bool LoadNextSprite(int load_index, SpriteFile &file, uint file_sprite_id) { size_t file_pos = file.GetPos(); /* Read sprite header. */ uint32_t num = file.GetContainerVersion() >= 2 ? file.ReadDword() : file.ReadWord(); if (num == 0) return false; uint8_t grf_type = file.ReadByte(); SpriteType type; void *data = nullptr; uint8_t control_flags = 0; if (grf_type == 0xFF) { /* Some NewGRF files have "empty" pseudo-sprites which are 1 * byte long. Catch these so the sprites won't be displayed. */ if (num == 1) { file.ReadByte(); return false; } type = SpriteType::Recolour; data = ReadRecolourSprite(file, num); } else if (file.GetContainerVersion() >= 2 && grf_type == 0xFD) { if (num != 4) { /* Invalid sprite section include, ignore. */ file.SkipBytes(num); return false; } /* It is not an error if no sprite with the provided ID is found in the sprite section. */ auto iter = _grf_sprite_offsets.find(file.ReadDword()); if (iter != _grf_sprite_offsets.end()) { file_pos = iter->second.file_pos; control_flags = iter->second.control_flags; } else { file_pos = SIZE_MAX; } type = SpriteType::Normal; } else { file.SkipBytes(7); type = SkipSpriteData(file, grf_type, num - 8) ? SpriteType::Normal : SpriteType::Invalid; /* Inline sprites are not supported for container version >= 2. */ if (file.GetContainerVersion() >= 2) return false; } if (type == SpriteType::Invalid) return false; if (load_index >= MAX_SPRITES) { UserError("Tried to load too many sprites (#{}; max {})", load_index, MAX_SPRITES); } bool is_mapgen = IsMapgenSpriteID(load_index); if (is_mapgen) { if (type != SpriteType::Normal) UserError("Uhm, would you be so kind not to load a NewGRF that changes the type of the map generator sprites?"); type = SpriteType::MapGen; } SpriteCache *sc = AllocateSpriteCache(load_index); sc->file = &file; sc->file_pos = file_pos; sc->ptr = data; sc->lru = 0; sc->id = file_sprite_id; sc->type = type; sc->warned = false; sc->control_flags = control_flags; return true; } void DupSprite(SpriteID old_spr, SpriteID new_spr) { SpriteCache *scnew = AllocateSpriteCache(new_spr); // may reallocate: so put it first SpriteCache *scold = GetSpriteCache(old_spr); scnew->file = scold->file; scnew->file_pos = scold->file_pos; scnew->ptr = nullptr; scnew->id = scold->id; scnew->type = scold->type; scnew->warned = false; } /** * S_FREE_MASK is used to mask-out lower bits of MemBlock::size * If they are non-zero, the block is free. * S_FREE_MASK has to ensure MemBlock is correctly aligned - * it means 8B (S_FREE_MASK == 7) on 64bit systems! */ static const size_t S_FREE_MASK = sizeof(size_t) - 1; /* to make sure nobody adds things to MemBlock without checking S_FREE_MASK first */ static_assert(sizeof(MemBlock) == sizeof(size_t)); /* make sure it's a power of two */ static_assert((sizeof(size_t) & (sizeof(size_t) - 1)) == 0); static inline MemBlock *NextBlock(MemBlock *block) { return (MemBlock*)((uint8_t*)block + (block->size & ~S_FREE_MASK)); } static size_t GetSpriteCacheUsage() { size_t tot_size = 0; MemBlock *s; for (s = _spritecache_ptr; s->size != 0; s = NextBlock(s)) { if (!(s->size & S_FREE_MASK)) tot_size += s->size; } return tot_size; } void IncreaseSpriteLRU() { /* Increase all LRU values */ if (_sprite_lru_counter > 16384) { SpriteID i; Debug(sprite, 5, "Fixing lru {}, inuse={}", _sprite_lru_counter, GetSpriteCacheUsage()); for (i = 0; i != _spritecache_items; i++) { SpriteCache *sc = GetSpriteCache(i); if (sc->ptr != nullptr) { if (sc->lru >= 0) { sc->lru = -1; } else if (sc->lru != -32768) { sc->lru--; } } } _sprite_lru_counter = 0; } /* Compact sprite cache every now and then. */ if (++_compact_cache_counter >= 740) { CompactSpriteCache(); _compact_cache_counter = 0; } } /** * Called when holes in the sprite cache should be removed. * That is accomplished by moving the cached data. */ static void CompactSpriteCache() { MemBlock *s; Debug(sprite, 3, "Compacting sprite cache, inuse={}", GetSpriteCacheUsage()); for (s = _spritecache_ptr; s->size != 0;) { if (s->size & S_FREE_MASK) { MemBlock *next = NextBlock(s); MemBlock temp; SpriteID i; /* Since free blocks are automatically coalesced, this should hold true. */ assert(!(next->size & S_FREE_MASK)); /* If the next block is the sentinel block, we can safely return */ if (next->size == 0) break; /* Locate the sprite belonging to the next pointer. */ for (i = 0; GetSpriteCache(i)->ptr != next->data; i++) { assert(i != _spritecache_items); } GetSpriteCache(i)->ptr = s->data; // Adjust sprite array entry /* Swap this and the next block */ temp = *s; memmove(s, next, next->size); s = NextBlock(s); *s = temp; /* Coalesce free blocks */ while (NextBlock(s)->size & S_FREE_MASK) { s->size += NextBlock(s)->size & ~S_FREE_MASK; } } else { s = NextBlock(s); } } } /** * Delete a single entry from the sprite cache. * @param item Entry to delete. */ static void DeleteEntryFromSpriteCache(uint item) { /* Mark the block as free (the block must be in use) */ MemBlock *s = (MemBlock*)GetSpriteCache(item)->ptr - 1; assert(!(s->size & S_FREE_MASK)); s->size |= S_FREE_MASK; GetSpriteCache(item)->ptr = nullptr; /* And coalesce adjacent free blocks */ for (s = _spritecache_ptr; s->size != 0; s = NextBlock(s)) { if (s->size & S_FREE_MASK) { while (NextBlock(s)->size & S_FREE_MASK) { s->size += NextBlock(s)->size & ~S_FREE_MASK; } } } } static void DeleteEntryFromSpriteCache() { uint best = UINT_MAX; int cur_lru; Debug(sprite, 3, "DeleteEntryFromSpriteCache, inuse={}", GetSpriteCacheUsage()); cur_lru = 0xffff; for (SpriteID i = 0; i != _spritecache_items; i++) { SpriteCache *sc = GetSpriteCache(i); if (sc->type != SpriteType::Recolour && sc->ptr != nullptr && sc->lru < cur_lru) { cur_lru = sc->lru; best = i; } } /* Display an error message and die, in case we found no sprite at all. * This shouldn't really happen, unless all sprites are locked. */ if (best == UINT_MAX) FatalError("Out of sprite memory"); DeleteEntryFromSpriteCache(best); } void *AllocSprite(size_t mem_req) { mem_req += sizeof(MemBlock); /* Align this to correct boundary. This also makes sure at least one * bit is not used, so we can use it for other things. */ mem_req = Align(mem_req, S_FREE_MASK + 1); for (;;) { MemBlock *s; for (s = _spritecache_ptr; s->size != 0; s = NextBlock(s)) { if (s->size & S_FREE_MASK) { size_t cur_size = s->size & ~S_FREE_MASK; /* Is the block exactly the size we need or * big enough for an additional free block? */ if (cur_size == mem_req || cur_size >= mem_req + sizeof(MemBlock)) { /* Set size and in use */ s->size = mem_req; /* Do we need to inject a free block too? */ if (cur_size != mem_req) { NextBlock(s)->size = (cur_size - mem_req) | S_FREE_MASK; } return s->data; } } } /* Reached sentinel, but no block found yet. Delete some old entry. */ DeleteEntryFromSpriteCache(); } } /** * Sprite allocator simply using malloc. */ void *SimpleSpriteAlloc(size_t size) { return MallocT(size); } /** * Handles the case when a sprite of different type is requested than is present in the SpriteCache. * For SpriteType::Font sprites, it is normal. In other cases, default sprite is loaded instead. * @param sprite ID of loaded sprite * @param requested requested sprite type * @param sc the currently known sprite cache for the requested sprite * @return fallback sprite * @note this function will do UserError() in the case the fallback sprite isn't available */ static void *HandleInvalidSpriteRequest(SpriteID sprite, SpriteType requested, SpriteCache *sc, AllocatorProc *allocator) { static const char * const sprite_types[] = { "normal", // SpriteType::Normal "map generator", // SpriteType::MapGen "character", // SpriteType::Font "recolour", // SpriteType::Recolour }; SpriteType available = sc->type; if (requested == SpriteType::Font && available == SpriteType::Normal) { if (sc->ptr == nullptr) sc->type = SpriteType::Font; return GetRawSprite(sprite, sc->type, allocator); } uint8_t warning_level = sc->warned ? 6 : 0; sc->warned = true; Debug(sprite, warning_level, "Tried to load {} sprite #{} as a {} sprite. Probable cause: NewGRF interference", sprite_types[static_cast(available)], sprite, sprite_types[static_cast(requested)]); switch (requested) { case SpriteType::Normal: if (sprite == SPR_IMG_QUERY) UserError("Uhm, would you be so kind not to load a NewGRF that makes the 'query' sprite a non-normal sprite?"); [[fallthrough]]; case SpriteType::Font: return GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, allocator); case SpriteType::Recolour: if (sprite == PALETTE_TO_DARK_BLUE) UserError("Uhm, would you be so kind not to load a NewGRF that makes the 'PALETTE_TO_DARK_BLUE' sprite a non-remap sprite?"); return GetRawSprite(PALETTE_TO_DARK_BLUE, SpriteType::Recolour, allocator); case SpriteType::MapGen: /* this shouldn't happen, overriding of SpriteType::MapGen sprites is checked in LoadNextSprite() * (the only case the check fails is when these sprites weren't even loaded...) */ default: NOT_REACHED(); } } /** * Reads a sprite (from disk or sprite cache). * If the sprite is not available or of wrong type, a fallback sprite is returned. * @param sprite Sprite to read. * @param type Expected sprite type. * @param allocator Allocator function to use. Set to nullptr to use the usual sprite cache. * @param encoder Sprite encoder to use. Set to nullptr to use the currently active blitter. * @return Sprite raw data */ void *GetRawSprite(SpriteID sprite, SpriteType type, AllocatorProc *allocator, SpriteEncoder *encoder) { assert(type != SpriteType::MapGen || IsMapgenSpriteID(sprite)); assert(type < SpriteType::Invalid); if (!SpriteExists(sprite)) { Debug(sprite, 1, "Tried to load non-existing sprite #{}. Probable cause: Wrong/missing NewGRFs", sprite); /* SPR_IMG_QUERY is a BIG FAT RED ? */ sprite = SPR_IMG_QUERY; } SpriteCache *sc = GetSpriteCache(sprite); if (sc->type != type) return HandleInvalidSpriteRequest(sprite, type, sc, allocator); if (allocator == nullptr && encoder == nullptr) { /* Load sprite into/from spritecache */ /* Update LRU */ sc->lru = ++_sprite_lru_counter; /* Load the sprite, if it is not loaded, yet */ if (sc->ptr == nullptr) sc->ptr = ReadSprite(sc, sprite, type, AllocSprite, nullptr); return sc->ptr; } else { /* Do not use the spritecache, but a different allocator. */ return ReadSprite(sc, sprite, type, allocator, encoder); } } static void GfxInitSpriteCache() { /* initialize sprite cache heap */ int bpp = BlitterFactory::GetCurrentBlitter()->GetScreenDepth(); uint target_size = (bpp > 0 ? _sprite_cache_size * bpp / 8 : 1) * 1024 * 1024; /* Remember 'target_size' from the previous allocation attempt, so we do not try to reach the target_size multiple times in case of failure. */ static uint last_alloc_attempt = 0; if (_spritecache_ptr == nullptr || (_allocated_sprite_cache_size != target_size && target_size != last_alloc_attempt)) { delete[] reinterpret_cast(_spritecache_ptr); last_alloc_attempt = target_size; _allocated_sprite_cache_size = target_size; do { /* Try to allocate 50% more to make sure we do not allocate almost all available. */ _spritecache_ptr = reinterpret_cast(new(std::nothrow) uint8_t[_allocated_sprite_cache_size + _allocated_sprite_cache_size / 2]); if (_spritecache_ptr != nullptr) { /* Allocation succeeded, but we wanted less. */ delete[] reinterpret_cast(_spritecache_ptr); _spritecache_ptr = reinterpret_cast(new uint8_t[_allocated_sprite_cache_size]); } else if (_allocated_sprite_cache_size < 2 * 1024 * 1024) { UserError("Cannot allocate spritecache"); } else { /* Try again to allocate half. */ _allocated_sprite_cache_size >>= 1; } } while (_spritecache_ptr == nullptr); if (_allocated_sprite_cache_size != target_size) { Debug(misc, 0, "Not enough memory to allocate {} MiB of spritecache. Spritecache was reduced to {} MiB.", target_size / 1024 / 1024, _allocated_sprite_cache_size / 1024 / 1024); ErrorMessageData msg(STR_CONFIG_ERROR_OUT_OF_MEMORY, STR_CONFIG_ERROR_SPRITECACHE_TOO_BIG); msg.SetDParam(0, target_size); msg.SetDParam(1, _allocated_sprite_cache_size); ScheduleErrorMessage(msg); } } /* A big free block */ _spritecache_ptr->size = (_allocated_sprite_cache_size - sizeof(MemBlock)) | S_FREE_MASK; /* Sentinel block (identified by size == 0) */ NextBlock(_spritecache_ptr)->size = 0; } void GfxInitSpriteMem() { GfxInitSpriteCache(); /* Reset the spritecache 'pool' */ free(_spritecache); _spritecache_items = 0; _spritecache = nullptr; _compact_cache_counter = 0; _sprite_files.clear(); } /** * Remove all encoded sprites from the sprite cache without * discarding sprite location information. */ void GfxClearSpriteCache() { /* Clear sprite ptr for all cached items */ for (uint i = 0; i != _spritecache_items; i++) { SpriteCache *sc = GetSpriteCache(i); if (sc->type != SpriteType::Recolour && sc->ptr != nullptr) DeleteEntryFromSpriteCache(i); } VideoDriver::GetInstance()->ClearSystemSprites(); } /** * Remove all encoded font sprites from the sprite cache without * discarding sprite location information. */ void GfxClearFontSpriteCache() { /* Clear sprite ptr for all cached font items */ for (uint i = 0; i != _spritecache_items; i++) { SpriteCache *sc = GetSpriteCache(i); if (sc->type == SpriteType::Font && sc->ptr != nullptr) DeleteEntryFromSpriteCache(i); } } /* static */ ReusableBuffer SpriteLoader::Sprite::buffer[ZOOM_LVL_END];