/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file string.cpp Handling of C-type strings (char*). */ #include "stdafx.h" #include "debug.h" #include "core/alloc_func.hpp" #include "core/math_func.hpp" #include "error_func.h" #include "string_func.h" #include "string_base.h" #include "table/control_codes.h" #include #include #ifdef _MSC_VER # define strncasecmp strnicmp #endif #ifdef _WIN32 # include "os/windows/win32.h" #endif #ifdef WITH_UNISCRIBE # include "os/windows/string_uniscribe.h" #endif #ifdef WITH_ICU_I18N /* Required by StrNaturalCompare. */ # include # include "language.h" # include "gfx_func.h" #endif /* WITH_ICU_I18N */ #if defined(WITH_COCOA) # include "os/macosx/string_osx.h" #endif #include "safeguards.h" /** * Copies characters from one buffer to another. * * Copies the source string to the destination buffer with respect of the * terminating null-character and the last pointer to the last element in * the destination buffer. If the last pointer is set to nullptr no boundary * check is performed. * * @note usage: strecpy(dst, src, lastof(dst)); * @note lastof() applies only to fixed size arrays * * @param dst The destination buffer * @param src The buffer containing the string to copy * @param last The pointer to the last element of the destination buffer * @return The pointer to the terminating null-character in the destination buffer */ char *strecpy(char *dst, const char *src, const char *last) { assert(dst <= last); while (dst != last && *src != '\0') { *dst++ = *src++; } *dst = '\0'; if (dst == last && *src != '\0') { #if defined(STRGEN) || defined(SETTINGSGEN) FatalError("String too long for destination buffer"); #else /* STRGEN || SETTINGSGEN */ Debug(misc, 0, "String too long for destination buffer"); #endif /* STRGEN || SETTINGSGEN */ } return dst; } /** * Format a byte array into a continuous hex string. * @param data Array to format * @return Converted string. */ std::string FormatArrayAsHex(std::span data) { std::string str; str.reserve(data.size() * 2 + 1); for (auto b : data) { fmt::format_to(std::back_inserter(str), "{:02X}", b); } return str; } /** * Copies the valid (UTF-8) characters from \c str up to \c last to the \c dst. * Depending on the \c settings invalid characters can be replaced with a * question mark, as well as determining what characters are deemed invalid. * * It is allowed for \c dst to be the same as \c src, in which case the string * is make valid in place. * @param dst The destination to write to. * @param str The string to validate. * @param last The last valid character of str. * @param settings The settings for the string validation. */ template static void StrMakeValid(T &dst, const char *str, const char *last, StringValidationSettings settings) { /* Assume the ABSOLUTE WORST to be in str as it comes from the outside. */ while (str <= last && *str != '\0') { size_t len = Utf8EncodedCharLen(*str); char32_t c; /* If the first byte does not look like the first byte of an encoded * character, i.e. encoded length is 0, then this byte is definitely bad * and it should be skipped. * When the first byte looks like the first byte of an encoded character, * then the remaining bytes in the string are checked whether the whole * encoded character can be there. If that is not the case, this byte is * skipped. * Finally we attempt to decode the encoded character, which does certain * extra validations to see whether the correct number of bytes were used * to encode the character. If that is not the case, the byte is probably * invalid and it is skipped. We could emit a question mark, but then the * logic below cannot just copy bytes, it would need to re-encode the * decoded characters as the length in bytes may have changed. * * The goals here is to get as much valid Utf8 encoded characters from the * source string to the destination string. * * Note: a multi-byte encoded termination ('\0') will trigger the encoded * char length and the decoded length to differ, so it will be ignored as * invalid character data. If it were to reach the termination, then we * would also reach the "last" byte of the string and a normal '\0' * termination will be placed after it. */ if (len == 0 || str + len > last + 1 || len != Utf8Decode(&c, str)) { /* Maybe the next byte is still a valid character? */ str++; continue; } if ((IsPrintable(c) && (c < SCC_SPRITE_START || c > SCC_SPRITE_END)) || ((settings & SVS_ALLOW_CONTROL_CODE) != 0 && c == SCC_ENCODED)) { /* Copy the character back. Even if dst is current the same as str * (i.e. no characters have been changed) this is quicker than * moving the pointers ahead by len */ do { *dst++ = *str++; } while (--len != 0); } else if ((settings & SVS_ALLOW_NEWLINE) != 0 && c == '\n') { *dst++ = *str++; } else { if ((settings & SVS_ALLOW_NEWLINE) != 0 && c == '\r' && str[1] == '\n') { str += len; continue; } str += len; if ((settings & SVS_REPLACE_TAB_CR_NL_WITH_SPACE) != 0 && (c == '\r' || c == '\n' || c == '\t')) { /* Replace the tab, carriage return or newline with a space. */ *dst++ = ' '; } else if ((settings & SVS_REPLACE_WITH_QUESTION_MARK) != 0) { /* Replace the undesirable character with a question mark */ *dst++ = '?'; } } } /* String termination, if needed, is left to the caller of this function. */ } /** * Scans the string for invalid characters and replaces then with a * question mark '?' (if not ignored). * @param str The string to validate. * @param last The last valid character of str. * @param settings The settings for the string validation. */ void StrMakeValidInPlace(char *str, const char *last, StringValidationSettings settings) { char *dst = str; StrMakeValid(dst, str, last, settings); *dst = '\0'; } /** * Scans the string for invalid characters and replaces then with a * question mark '?' (if not ignored). * Only use this function when you are sure the string ends with a '\0'; * otherwise use StrMakeValidInPlace(str, last, settings) variant. * @param str The string (of which you are sure ends with '\0') to validate. */ void StrMakeValidInPlace(char *str, StringValidationSettings settings) { /* We know it is '\0' terminated. */ StrMakeValidInPlace(str, str + strlen(str), settings); } /** * Copies the valid (UTF-8) characters from \c str to the returned string. * Depending on the \c settings invalid characters can be replaced with a * question mark, as well as determining what characters are deemed invalid. * @param str The string to validate. * @param settings The settings for the string validation. */ std::string StrMakeValid(std::string_view str, StringValidationSettings settings) { if (str.empty()) return {}; auto buf = str.data(); auto last = buf + str.size() - 1; std::ostringstream dst; std::ostreambuf_iterator dst_iter(dst); StrMakeValid(dst_iter, buf, last, settings); return dst.str(); } /** * Checks whether the given string is valid, i.e. contains only * valid (printable) characters and is properly terminated. * @param str The string to validate. * @param last The last character of the string, i.e. the string * must be terminated here or earlier. */ bool StrValid(const char *str, const char *last) { /* Assume the ABSOLUTE WORST to be in str as it comes from the outside. */ while (str <= last && *str != '\0') { size_t len = Utf8EncodedCharLen(*str); /* Encoded length is 0 if the character isn't known. * The length check is needed to prevent Utf8Decode to read * over the terminating '\0' if that happens to be placed * within the encoding of an UTF8 character. */ if (len == 0 || str + len > last) return false; char32_t c; len = Utf8Decode(&c, str); if (!IsPrintable(c) || (c >= SCC_SPRITE_START && c <= SCC_SPRITE_END)) { return false; } str += len; } return *str == '\0'; } /** * Trim the spaces from given string in place, i.e. the string buffer that * is passed will be modified whenever spaces exist in the given string. * When there are spaces at the begin, the whole string is moved forward * and when there are spaces at the back the '\0' termination is moved. * @param str The string to perform the in place trimming on. */ void StrTrimInPlace(std::string &str) { str = StrTrimView(str); } std::string_view StrTrimView(std::string_view str) { size_t first_pos = str.find_first_not_of(' '); if (first_pos == std::string::npos) { return std::string_view{}; } size_t last_pos = str.find_last_not_of(' '); return str.substr(first_pos, last_pos - first_pos + 1); } /** * Check whether the given string starts with the given prefix, ignoring case. * @param str The string to look at. * @param prefix The prefix to look for. * @return True iff the begin of the string is the same as the prefix, ignoring case. */ bool StrStartsWithIgnoreCase(std::string_view str, const std::string_view prefix) { if (str.size() < prefix.size()) return false; return StrEqualsIgnoreCase(str.substr(0, prefix.size()), prefix); } /** Case insensitive implementation of the standard character type traits. */ struct CaseInsensitiveCharTraits : public std::char_traits { static bool eq(char c1, char c2) { return toupper(c1) == toupper(c2); } static bool ne(char c1, char c2) { return toupper(c1) != toupper(c2); } static bool lt(char c1, char c2) { return toupper(c1) < toupper(c2); } static int compare(const char *s1, const char *s2, size_t n) { while (n-- != 0) { if (toupper(*s1) < toupper(*s2)) return -1; if (toupper(*s1) > toupper(*s2)) return 1; ++s1; ++s2; } return 0; } static const char *find(const char *s, size_t n, char a) { for (; n > 0; --n, ++s) { if (toupper(*s) == toupper(a)) return s; } return nullptr; } }; /** Case insensitive string view. */ typedef std::basic_string_view CaseInsensitiveStringView; /** * Check whether the given string ends with the given suffix, ignoring case. * @param str The string to look at. * @param suffix The suffix to look for. * @return True iff the end of the string is the same as the suffix, ignoring case. */ bool StrEndsWithIgnoreCase(std::string_view str, const std::string_view suffix) { if (str.size() < suffix.size()) return false; return StrEqualsIgnoreCase(str.substr(str.size() - suffix.size()), suffix); } /** * Compares two string( view)s, while ignoring the case of the characters. * @param str1 The first string. * @param str2 The second string. * @return Less than zero if str1 < str2, zero if str1 == str2, greater than * zero if str1 > str2. All ignoring the case of the characters. */ int StrCompareIgnoreCase(const std::string_view str1, const std::string_view str2) { CaseInsensitiveStringView ci_str1{ str1.data(), str1.size() }; CaseInsensitiveStringView ci_str2{ str2.data(), str2.size() }; return ci_str1.compare(ci_str2); } /** * Compares two string( view)s for equality, while ignoring the case of the characters. * @param str1 The first string. * @param str2 The second string. * @return True iff both strings are equal, barring the case of the characters. */ bool StrEqualsIgnoreCase(const std::string_view str1, const std::string_view str2) { if (str1.size() != str2.size()) return false; return StrCompareIgnoreCase(str1, str2) == 0; } /** * Get the length of an UTF-8 encoded string in number of characters * and thus not the number of bytes that the encoded string contains. * @param s The string to get the length for. * @return The length of the string in characters. */ size_t Utf8StringLength(const char *s) { size_t len = 0; const char *t = s; while (Utf8Consume(&t) != 0) len++; return len; } /** * Get the length of an UTF-8 encoded string in number of characters * and thus not the number of bytes that the encoded string contains. * @param s The string to get the length for. * @return The length of the string in characters. */ size_t Utf8StringLength(const std::string &str) { return Utf8StringLength(str.c_str()); } bool strtolower(std::string &str, std::string::size_type offs) { bool changed = false; for (auto ch = str.begin() + offs; ch != str.end(); ++ch) { auto new_ch = static_cast(tolower(static_cast(*ch))); changed |= new_ch != *ch; *ch = new_ch; } return changed; } /** * Only allow certain keys. You can define the filter to be used. This makes * sure no invalid keys can get into an editbox, like BELL. * @param key character to be checked * @param afilter the filter to use * @return true or false depending if the character is printable/valid or not */ bool IsValidChar(char32_t key, CharSetFilter afilter) { switch (afilter) { case CS_ALPHANUMERAL: return IsPrintable(key); case CS_NUMERAL: return (key >= '0' && key <= '9'); case CS_NUMERAL_SPACE: return (key >= '0' && key <= '9') || key == ' '; case CS_NUMERAL_SIGNED: return (key >= '0' && key <= '9') || key == '-'; case CS_ALPHA: return IsPrintable(key) && !(key >= '0' && key <= '9'); case CS_HEXADECIMAL: return (key >= '0' && key <= '9') || (key >= 'a' && key <= 'f') || (key >= 'A' && key <= 'F'); default: NOT_REACHED(); } } /* UTF-8 handling routines */ /** * Decode and consume the next UTF-8 encoded character. * @param c Buffer to place decoded character. * @param s Character stream to retrieve character from. * @return Number of characters in the sequence. */ size_t Utf8Decode(char32_t *c, const char *s) { assert(c != nullptr); if (!HasBit(s[0], 7)) { /* Single byte character: 0xxxxxxx */ *c = s[0]; return 1; } else if (GB(s[0], 5, 3) == 6) { if (IsUtf8Part(s[1])) { /* Double byte character: 110xxxxx 10xxxxxx */ *c = GB(s[0], 0, 5) << 6 | GB(s[1], 0, 6); if (*c >= 0x80) return 2; } } else if (GB(s[0], 4, 4) == 14) { if (IsUtf8Part(s[1]) && IsUtf8Part(s[2])) { /* Triple byte character: 1110xxxx 10xxxxxx 10xxxxxx */ *c = GB(s[0], 0, 4) << 12 | GB(s[1], 0, 6) << 6 | GB(s[2], 0, 6); if (*c >= 0x800) return 3; } } else if (GB(s[0], 3, 5) == 30) { if (IsUtf8Part(s[1]) && IsUtf8Part(s[2]) && IsUtf8Part(s[3])) { /* 4 byte character: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */ *c = GB(s[0], 0, 3) << 18 | GB(s[1], 0, 6) << 12 | GB(s[2], 0, 6) << 6 | GB(s[3], 0, 6); if (*c >= 0x10000 && *c <= 0x10FFFF) return 4; } } *c = '?'; return 1; } /** * Encode a unicode character and place it in the buffer. * @tparam T Type of the buffer. * @param buf Buffer to place character. * @param c Unicode character to encode. * @return Number of characters in the encoded sequence. */ template inline size_t Utf8Encode(T buf, char32_t c) { if (c < 0x80) { *buf = c; return 1; } else if (c < 0x800) { *buf++ = 0xC0 + GB(c, 6, 5); *buf = 0x80 + GB(c, 0, 6); return 2; } else if (c < 0x10000) { *buf++ = 0xE0 + GB(c, 12, 4); *buf++ = 0x80 + GB(c, 6, 6); *buf = 0x80 + GB(c, 0, 6); return 3; } else if (c < 0x110000) { *buf++ = 0xF0 + GB(c, 18, 3); *buf++ = 0x80 + GB(c, 12, 6); *buf++ = 0x80 + GB(c, 6, 6); *buf = 0x80 + GB(c, 0, 6); return 4; } *buf = '?'; return 1; } size_t Utf8Encode(char *buf, char32_t c) { return Utf8Encode(buf, c); } size_t Utf8Encode(std::ostreambuf_iterator &buf, char32_t c) { return Utf8Encode &>(buf, c); } size_t Utf8Encode(std::back_insert_iterator &buf, char32_t c) { return Utf8Encode &>(buf, c); } /** * Properly terminate an UTF8 string to some maximum length * @param s string to check if it needs additional trimming * @param maxlen the maximum length the buffer can have. * @return the new length in bytes of the string (eg. strlen(new_string)) * @note maxlen is the string length _INCLUDING_ the terminating '\0' */ size_t Utf8TrimString(char *s, size_t maxlen) { size_t length = 0; for (const char *ptr = strchr(s, '\0'); *s != '\0';) { size_t len = Utf8EncodedCharLen(*s); /* Silently ignore invalid UTF8 sequences, our only concern trimming */ if (len == 0) len = 1; /* Take care when a hard cutoff was made for the string and * the last UTF8 sequence is invalid */ if (length + len >= maxlen || (s + len > ptr)) break; s += len; length += len; } *s = '\0'; return length; } #ifdef DEFINE_STRCASESTR char *strcasestr(const char *haystack, const char *needle) { size_t hay_len = strlen(haystack); size_t needle_len = strlen(needle); while (hay_len >= needle_len) { if (strncasecmp(haystack, needle, needle_len) == 0) return const_cast(haystack); haystack++; hay_len--; } return nullptr; } #endif /* DEFINE_STRCASESTR */ /** * Skip some of the 'garbage' in the string that we don't want to use * to sort on. This way the alphabetical sorting will work better as * we would be actually using those characters instead of some other * characters such as spaces and tildes at the begin of the name. * @param str The string to skip the initial garbage of. * @return The string with the garbage skipped. */ static std::string_view SkipGarbage(std::string_view str) { while (!str.empty() && (str[0] < '0' || IsInsideMM(str[0], ';', '@' + 1) || IsInsideMM(str[0], '[', '`' + 1) || IsInsideMM(str[0], '{', '~' + 1))) str.remove_prefix(1); return str; } /** * Compares two strings using case insensitive natural sort. * * @param s1 First string to compare. * @param s2 Second string to compare. * @param ignore_garbage_at_front Skip punctuation characters in the front * @return Less than zero if s1 < s2, zero if s1 == s2, greater than zero if s1 > s2. */ int StrNaturalCompare(std::string_view s1, std::string_view s2, bool ignore_garbage_at_front) { if (ignore_garbage_at_front) { s1 = SkipGarbage(s1); s2 = SkipGarbage(s2); } #ifdef WITH_ICU_I18N if (_current_collator) { UErrorCode status = U_ZERO_ERROR; int result = _current_collator->compareUTF8(icu::StringPiece(s1.data(), s1.size()), icu::StringPiece(s2.data(), s2.size()), status); if (U_SUCCESS(status)) return result; } #endif /* WITH_ICU_I18N */ #if defined(_WIN32) && !defined(STRGEN) && !defined(SETTINGSGEN) int res = OTTDStringCompare(s1, s2); if (res != 0) return res - 2; // Convert to normal C return values. #endif #if defined(WITH_COCOA) && !defined(STRGEN) && !defined(SETTINGSGEN) int res = MacOSStringCompare(s1, s2); if (res != 0) return res - 2; // Convert to normal C return values. #endif /* Do a normal comparison if ICU is missing or if we cannot create a collator. */ return StrCompareIgnoreCase(s1, s2); } #ifdef WITH_ICU_I18N #include /** * Search if a string is contained in another string using the current locale. * * @param str String to search in. * @param value String to search for. * @param case_insensitive Search case-insensitive. * @return 1 if value was found, 0 if it was not found, or -1 if not supported by the OS. */ static int ICUStringContains(const std::string_view str, const std::string_view value, bool case_insensitive) { if (_current_collator) { std::unique_ptr coll(dynamic_cast(_current_collator->clone())); if (coll) { UErrorCode status = U_ZERO_ERROR; coll->setStrength(case_insensitive ? icu::Collator::SECONDARY : icu::Collator::TERTIARY); coll->setAttribute(UCOL_NUMERIC_COLLATION, UCOL_OFF, status); auto u_str = icu::UnicodeString::fromUTF8(icu::StringPiece(str.data(), str.size())); auto u_value = icu::UnicodeString::fromUTF8(icu::StringPiece(value.data(), value.size())); icu::StringSearch u_searcher(u_value, u_str, coll.get(), nullptr, status); if (U_SUCCESS(status)) { auto pos = u_searcher.first(status); if (U_SUCCESS(status)) return pos != USEARCH_DONE ? 1 : 0; } } } return -1; } #endif /* WITH_ICU_I18N */ /** * Checks if a string is contained in another string with a locale-aware comparison that is case sensitive. * * @param str The string to search in. * @param value The string to search for. * @return True if a match was found. */ [[nodiscard]] bool StrNaturalContains(const std::string_view str, const std::string_view value) { #ifdef WITH_ICU_I18N int res_u = ICUStringContains(str, value, false); if (res_u >= 0) return res_u > 0; #endif /* WITH_ICU_I18N */ #if defined(_WIN32) && !defined(STRGEN) && !defined(SETTINGSGEN) int res = Win32StringContains(str, value, false); if (res >= 0) return res > 0; #endif #if defined(WITH_COCOA) && !defined(STRGEN) && !defined(SETTINGSGEN) int res = MacOSStringContains(str, value, false); if (res >= 0) return res > 0; #endif return str.find(value) != std::string_view::npos; } /** * Checks if a string is contained in another string with a locale-aware comparison that is case insensitive. * * @param str The string to search in. * @param value The string to search for. * @return True if a match was found. */ [[nodiscard]] bool StrNaturalContainsIgnoreCase(const std::string_view str, const std::string_view value) { #ifdef WITH_ICU_I18N int res_u = ICUStringContains(str, value, true); if (res_u >= 0) return res_u > 0; #endif /* WITH_ICU_I18N */ #if defined(_WIN32) && !defined(STRGEN) && !defined(SETTINGSGEN) int res = Win32StringContains(str, value, true); if (res >= 0) return res > 0; #endif #if defined(WITH_COCOA) && !defined(STRGEN) && !defined(SETTINGSGEN) int res = MacOSStringContains(str, value, true); if (res >= 0) return res > 0; #endif CaseInsensitiveStringView ci_str{ str.data(), str.size() }; CaseInsensitiveStringView ci_value{ value.data(), value.size() }; return ci_str.find(ci_value) != CaseInsensitiveStringView::npos; } /** * Convert a single hex-nibble to a byte. * * @param c The hex-nibble to convert. * @return The byte the hex-nibble represents, or -1 if it is not a valid hex-nibble. */ static int ConvertHexNibbleToByte(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'A' && c <= 'F') return c + 10 - 'A'; if (c >= 'a' && c <= 'f') return c + 10 - 'a'; return -1; } /** * Convert a hex-string to a byte-array, while validating it was actually hex. * * @param hex The hex-string to convert. * @param bytes The byte-array to write the result to. * * @note The length of the hex-string has to be exactly twice that of the length * of the byte-array, otherwise conversion will fail. * * @return True iff the hex-string was valid and the conversion succeeded. */ bool ConvertHexToBytes(std::string_view hex, std::span bytes) { if (bytes.size() != hex.size() / 2) { return false; } /* Hex-string lengths are always divisible by 2. */ if (hex.size() % 2 != 0) { return false; } for (size_t i = 0; i < hex.size() / 2; i++) { auto hi = ConvertHexNibbleToByte(hex[i * 2]); auto lo = ConvertHexNibbleToByte(hex[i * 2 + 1]); if (hi < 0 || lo < 0) { return false; } bytes[i] = (hi << 4) | lo; } return true; } #ifdef WITH_UNISCRIBE /* static */ std::unique_ptr StringIterator::Create() { return std::make_unique(); } #elif defined(WITH_ICU_I18N) #include #include /** String iterator using ICU as a backend. */ class IcuStringIterator : public StringIterator { icu::BreakIterator *char_itr; ///< ICU iterator for characters. icu::BreakIterator *word_itr; ///< ICU iterator for words. std::vector utf16_str; ///< UTF-16 copy of the string. std::vector utf16_to_utf8; ///< Mapping from UTF-16 code point position to index in the UTF-8 source string. public: IcuStringIterator() : char_itr(nullptr), word_itr(nullptr) { UErrorCode status = U_ZERO_ERROR; this->char_itr = icu::BreakIterator::createCharacterInstance(icu::Locale(_current_language != nullptr ? _current_language->isocode : "en"), status); this->word_itr = icu::BreakIterator::createWordInstance(icu::Locale(_current_language != nullptr ? _current_language->isocode : "en"), status); this->utf16_str.push_back('\0'); this->utf16_to_utf8.push_back(0); } ~IcuStringIterator() override { delete this->char_itr; delete this->word_itr; } void SetString(const char *s) override { const char *string_base = s; /* Unfortunately current ICU versions only provide rudimentary support * for word break iterators (especially for CJK languages) in combination * with UTF-8 input. As a work around we have to convert the input to * UTF-16 and create a mapping back to UTF-8 character indices. */ this->utf16_str.clear(); this->utf16_to_utf8.clear(); while (*s != '\0') { size_t idx = s - string_base; char32_t c = Utf8Consume(&s); if (c < 0x10000) { this->utf16_str.push_back((UChar)c); } else { /* Make a surrogate pair. */ this->utf16_str.push_back((UChar)(0xD800 + ((c - 0x10000) >> 10))); this->utf16_str.push_back((UChar)(0xDC00 + ((c - 0x10000) & 0x3FF))); this->utf16_to_utf8.push_back(idx); } this->utf16_to_utf8.push_back(idx); } this->utf16_str.push_back('\0'); this->utf16_to_utf8.push_back(s - string_base); UText text = UTEXT_INITIALIZER; UErrorCode status = U_ZERO_ERROR; utext_openUChars(&text, this->utf16_str.data(), this->utf16_str.size() - 1, &status); this->char_itr->setText(&text, status); this->word_itr->setText(&text, status); this->char_itr->first(); this->word_itr->first(); } size_t SetCurPosition(size_t pos) override { /* Convert incoming position to an UTF-16 string index. */ uint utf16_pos = 0; for (uint i = 0; i < this->utf16_to_utf8.size(); i++) { if (this->utf16_to_utf8[i] == pos) { utf16_pos = i; break; } } /* isBoundary has the documented side-effect of setting the current * position to the first valid boundary equal to or greater than * the passed value. */ this->char_itr->isBoundary(utf16_pos); return this->utf16_to_utf8[this->char_itr->current()]; } size_t Next(IterType what) override { int32_t pos; switch (what) { case ITER_CHARACTER: pos = this->char_itr->next(); break; case ITER_WORD: pos = this->word_itr->following(this->char_itr->current()); /* The ICU word iterator considers both the start and the end of a word a valid * break point, but we only want word starts. Move to the next location in * case the new position points to whitespace. */ while (pos != icu::BreakIterator::DONE && IsWhitespace(Utf16DecodeChar((const uint16_t *)&this->utf16_str[pos]))) { int32_t new_pos = this->word_itr->next(); /* Don't set it to DONE if it was valid before. Otherwise we'll return END * even though the iterator wasn't at the end of the string before. */ if (new_pos == icu::BreakIterator::DONE) break; pos = new_pos; } this->char_itr->isBoundary(pos); break; default: NOT_REACHED(); } return pos == icu::BreakIterator::DONE ? END : this->utf16_to_utf8[pos]; } size_t Prev(IterType what) override { int32_t pos; switch (what) { case ITER_CHARACTER: pos = this->char_itr->previous(); break; case ITER_WORD: pos = this->word_itr->preceding(this->char_itr->current()); /* The ICU word iterator considers both the start and the end of a word a valid * break point, but we only want word starts. Move to the previous location in * case the new position points to whitespace. */ while (pos != icu::BreakIterator::DONE && IsWhitespace(Utf16DecodeChar((const uint16_t *)&this->utf16_str[pos]))) { int32_t new_pos = this->word_itr->previous(); /* Don't set it to DONE if it was valid before. Otherwise we'll return END * even though the iterator wasn't at the start of the string before. */ if (new_pos == icu::BreakIterator::DONE) break; pos = new_pos; } this->char_itr->isBoundary(pos); break; default: NOT_REACHED(); } return pos == icu::BreakIterator::DONE ? END : this->utf16_to_utf8[pos]; } }; /* static */ std::unique_ptr StringIterator::Create() { return std::make_unique(); } #else /** Fallback simple string iterator. */ class DefaultStringIterator : public StringIterator { const char *string; ///< Current string. size_t len; ///< String length. size_t cur_pos; ///< Current iteration position. public: DefaultStringIterator() : string(nullptr), len(0), cur_pos(0) { } void SetString(const char *s) override { this->string = s; this->len = strlen(s); this->cur_pos = 0; } size_t SetCurPosition(size_t pos) override { assert(this->string != nullptr && pos <= this->len); /* Sanitize in case we get a position inside an UTF-8 sequence. */ while (pos > 0 && IsUtf8Part(this->string[pos])) pos--; return this->cur_pos = pos; } size_t Next(IterType what) override { assert(this->string != nullptr); /* Already at the end? */ if (this->cur_pos >= this->len) return END; switch (what) { case ITER_CHARACTER: { char32_t c; this->cur_pos += Utf8Decode(&c, this->string + this->cur_pos); return this->cur_pos; } case ITER_WORD: { char32_t c; /* Consume current word. */ size_t offs = Utf8Decode(&c, this->string + this->cur_pos); while (this->cur_pos < this->len && !IsWhitespace(c)) { this->cur_pos += offs; offs = Utf8Decode(&c, this->string + this->cur_pos); } /* Consume whitespace to the next word. */ while (this->cur_pos < this->len && IsWhitespace(c)) { this->cur_pos += offs; offs = Utf8Decode(&c, this->string + this->cur_pos); } return this->cur_pos; } default: NOT_REACHED(); } return END; } size_t Prev(IterType what) override { assert(this->string != nullptr); /* Already at the beginning? */ if (this->cur_pos == 0) return END; switch (what) { case ITER_CHARACTER: return this->cur_pos = Utf8PrevChar(this->string + this->cur_pos) - this->string; case ITER_WORD: { const char *s = this->string + this->cur_pos; char32_t c; /* Consume preceding whitespace. */ do { s = Utf8PrevChar(s); Utf8Decode(&c, s); } while (s > this->string && IsWhitespace(c)); /* Consume preceding word. */ while (s > this->string && !IsWhitespace(c)) { s = Utf8PrevChar(s); Utf8Decode(&c, s); } /* Move caret back to the beginning of the word. */ if (IsWhitespace(c)) Utf8Consume(&s); return this->cur_pos = s - this->string; } default: NOT_REACHED(); } return END; } }; #if defined(WITH_COCOA) && !defined(STRGEN) && !defined(SETTINGSGEN) /* static */ std::unique_ptr StringIterator::Create() { std::unique_ptr i = OSXStringIterator::Create(); if (i != nullptr) return i; return std::make_unique(); } #else /* static */ std::unique_ptr StringIterator::Create() { return std::make_unique(); } #endif /* defined(WITH_COCOA) && !defined(STRGEN) && !defined(SETTINGSGEN) */ #endif