/* $Id$ */ /** @file macros.h */ #ifndef MACROS_H #define MACROS_H /** * Fetch n bits from x, started at bit s. * * This macro can be used to fetch n bits from the value x. The * s value set the startposition to read. The startposition is * count from the LSB and starts at 0. The result starts at a * LSB, as this isn't just an and-bitmask but also some * bit-shifting operations. GB(0xFF, 2, 1) will so * return 0x01 (0000 0001) instead of * 0x04 (0000 0100). * * @param x The value to read some bits. * @param s The startposition to read some bits. * @param n The number of bits to read. * @return The selected bits, aligned to a LSB. */ #define GB(x, s, n) (((x) >> (s)) & ((1U << (n)) - 1)) /** Set n bits from x starting at bit s to d * * This macro sets n bits from x which started as bit s to the value of * d. The parameters x, s and n works the same as the parameters of * #GB. The result is saved in x again. Unused bits in the window * provided by n are set to 0 if the value of b isn't "big" enough. * This is not a bug, its a feature. * * @note Parameter x must be a variable as the result is saved there. * @note To avoid unexpecting results the value of b should not use more * space as the provided space of n bits (log2) * @param x The variable to change some bits * @param s The startposition for the new bits * @param n The size/window for the new bits * @param d The actually new bits to save in the defined position. * @return The new value of x */ #define SB(x, s, n, d) ((x) = ((x) & ~(((1U << (n)) - 1) << (s))) | ((d) << (s))) /** Add i to n bits of x starting at bit s. * * This add the value of i on n bits of x starting at bit s. The parameters x, * s, i are similar to #GB besides x must be a variable as the result are * saved there. An overflow does not affect the following bits of the given * bit window and is simply ignored. * * @note Parameter x must be a variable as the result is saved there. * @param x The variable to add some bits at some position * @param s The startposition of the addition * @param n The size/window for the addition * @param i The value to add at the given startposition in the given window. * @return The new value of x */ #define AB(x, s, n, i) ((x) = ((x) & ~(((1U << (n)) - 1) << (s))) | (((x) + ((i) << (s))) & (((1U << (n)) - 1) << (s)))) #ifdef min #undef min #endif #ifdef max #undef max #endif /** * Returns the maximum of two values. * * This function returns the greater value of two given values. * If they are equal the value of a is returned. * * @param a The first value * @param b The second value * @return The greater value or a if equals */ template static inline T max(T a, T b) { return a >= b ? a : b; } /** * Returns the minimum of two values. * * This function returns the smaller value of two given values. * If they are equal the value of b is returned. * * @param a The first value * @param b The second value * @return The smaller value or b if equals */ template static inline T min(T a, T b) { return a < b ? a : b; } /** * Returns the minimum of two integer. * * This function returns the smaller value of two given integers. * * @param a The first integer * @param b The second integer * @return The smaller value */ static inline int min(int a, int b) { if (a <= b) return a; return b; } /** * Returns the minimum of two unsigned integers. * * This function returns the smaller value of two given unsigned integers. * * @param a The first unsigned integer * @param b The second unsigned integer * @return The smaller value */ static inline uint minu(uint a, uint b) { if (a <= b) return a; return b; } /** * Clamp an integer between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see clampu(uint, uint, uint) */ static inline int clamp(int a, int min, int max) { if (a <= min) return min; if (a >= max) return max; return a; } /** * Clamp an unsigned integer between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see clamp(int, int, int) */ static inline uint clampu(uint a, uint min, uint max) { if (a <= min) return min; if (a >= max) return max; return a; } /** * Reduce a signed 64-bit int to a signed 32-bit one * * This function clamps a 64-bit integer to a 32-bit integer. * If the 64-bit value is smaller than the smallest 32-bit integer * value 0x80000000 this value is returned (the left one bit is the sign bit). * If the 64-bit value is greater than the greatest 32-bit integer value 0x7FFFFFFF * this value is returned. In all other cases the 64-bit value 'fits' in a * 32-bits integer field and so the value is casted to int32 and returned. * * @param a The 64-bit value to clamps * @return The 64-bit value reduced to a 32-bit value * @see clamp(int, int, int) */ static inline int32 ClampToI32(int64 a) { if (a <= (int32)0x80000000) return 0x80000000; if (a >= (int32)0x7FFFFFFF) return 0x7FFFFFFF; return (int32)a; } /** * Multiply two integer values and shift the results to right. * * This function multiplies two integer values. The result is * shifted by the amount of shift to right. * * @param a The first integer * @param b The second integer * @param shift The amount to shift the value to right. * @return The shifted result */ static inline int32 BIGMULSS(int32 a, int32 b, int shift) { return (int32)((int64)a * (int64)b >> shift); } /** * Multiply two unsigned integers and shift the results to right. * * This function multiplies two unsigned integers. The result is * shifted by the amount of shift to right. * * @param a The first unsigned integer * @param b The second unsigned integer * @param shift The amount to shift the value to right. * @return The shifted result */ static inline uint32 BIGMULUS(uint32 a, uint32 b, int shift) { return (uint32)((uint64)a * (uint64)b >> shift); } /** * Checks if a value is between a window started at some base point. * * This macro checks if the value x is between the value of base * and base+size. If x equals base this returns true. If x equals * base+size this returns false. * * @param x The value to check * @param base The base value of the interval * @param size The size of the interval * @return True if the value is in the interval, false else. */ /* OPT: optimized into an unsigned comparison */ //#define IS_INSIDE_1D(x, base, size) ((x) >= (base) && (x) < (base) + (size)) #define IS_INSIDE_1D(x, base, size) ( (uint)((x) - (base)) < ((uint)(size)) ) /** * Checks if a bit in a value is set. * * This function checks if a bit inside a value is set or not. * The y value specific the position of the bit, started at the * LSB and count from 0. * * @param x The value to check * @param y The position of the bit to check, started from the LSB * @return True if the bit is set, false else. */ template static inline bool HASBIT(T x, int y) { return (x & ((T)1 << y)) != 0; } /** * Set a bit in a variable. * * This function sets a bit in a variable. The variable is changed * and the value is also returned. Parameter y defines the bit and * starts at the LSB with 0. * * @param x The variable to set a bit * @param y The bit position to set * @return The new value of the old value with the bit set */ template static inline T SETBIT(T& x, int y) { return x |= (T)1 << y; } /** * Clears a bit in a variable. * * This function clears a bit in a variable. The variable is * changed and the value is also returned. Parameter y defines the bit * to clear and starts at the LSB with 0. * * @param x The variable to clear the bit * @param y The bit position to clear * @return The new value of the old value with the bit cleared */ template static inline T CLRBIT(T& x, int y) { return x &= ~((T)1 << y); } /** * Toggles a bit in a variable. * * This function toggles a bit in a variable. The variable is * changed and the value is also returned. Parameter y defines the bit * to toggle and starts at the LSB with 0. * * @param x The varliable to toggle the bit * @param y The bit position to toggle * @return The new value of the old value with the bit toggled */ template static inline T TOGGLEBIT(T& x, int y) { return x ^= (T)1 << y; } /* checking more bits. Maybe unneccessary, but easy to use */ /** * Check several bits in a value. * * This macro checks if a value contains at least one bit of an other * value. * * @param x The first value * @param y The second value * @return True if at least one bit is set in both values, false else. */ #define HASBITS(x, y) ((x) & (y)) /** * Sets several bits in a variable. * * This macro sets several bits in a variable. The bits to set are provided * by a value. The new value is also returned. * * @param x The variable to set some bits * @param y The value with set bits for setting them in the variable * @return The new value of x */ #define SETBITS(x, y) ((x) |= (y)) /** * Clears several bits in a variable. * * This macro clears several bits in a variable. The bits to clear are * provided by a value. The new value is also returned. * * @param x The variable to clear some bits * @param y The value with set bits for clearing them in the variable * @return The new value of x */ #define CLRBITS(x, y) ((x) &= ~(y)) #define GENERAL_SPRITE_COLOR(color) ((color) + PALETTE_RECOLOR_START) #define PLAYER_SPRITE_COLOR(owner) (GENERAL_SPRITE_COLOR(_player_colors[owner])) extern const byte _ffb_64[128]; /** * Returns the first occure of a bit in a 6-bit value (from right). * * Returns the position of the first bit that is not zero, counted from the * LSB. Ie, 110100 returns 2, 000001 returns 0, etc. When x == 0 returns * 0. * * @param x The 6-bit value to check the first zero-bit * @return The first position of a bit started from the LSB or 0 if x is 0. */ #define FIND_FIRST_BIT(x) _ffb_64[(x)] /** * Returns a value with the first occured of a bit set to zero. * * Returns x with the first bit from LSB that is not zero set * to zero. So, 110100 returns 110000, 000001 returns 000000, etc. * * @param x The value to returned a new value * @return The value which the first bit is set to zero */ #define KILL_FIRST_BIT(x) _ffb_64[(x) + 64] /** * Finds the position of the first bit in an integer. * * This function returns the position of the first bit set in the * integer. It does only check the bits of the bitmask * 0x3F3F (0011111100111111) and checks only the * bits of the bitmask 0x3F00 if and only if the * lower part 0x00FF is 0. This results the bits at 0x00C0 must * be also zero to check the bits at 0x3F00. * * @param value The value to check the first bits * @return The position of the first bit which is set * @see FIND_FIRST_BIT */ static inline int FindFirstBit2x64(int value) { /* int i = 0; if ( (byte) value == 0) { i += 8; value >>= 8; } return i + FIND_FIRST_BIT(value & 0x3F); Faster ( or at least cleaner ) implementation below? */ if (GB(value, 0, 8) == 0) { return FIND_FIRST_BIT(GB(value, 8, 6)) + 8; } else { return FIND_FIRST_BIT(GB(value, 0, 6)); } } /** * Clear the first bit in an integer. * * This function returns a value where the first bit (from LSB) * is cleared. This function checks, similar to FindFirstBit2x64, * the bits at 0x3F3F. * * @param value The value to clear the first bit * @return The new value with the first bit cleared * @see KILL_FIRST_BIT * @see FindFirstBit2x64 */ static inline int KillFirstBit2x64(int value) { if (GB(value, 0, 8) == 0) { return KILL_FIRST_BIT(GB(value, 8, 6)) << 8; } else { return value & (KILL_FIRST_BIT(GB(value, 0, 6)) | 0x3F00); } } /** * Returns true if value a has only one bit set to 1 * * This macro returns true if only one bit is set. * * @param a The value to check * @return True if only one bit is set, false else */ #define HAS_SINGLE_BIT(a) ( ((a) & ((a) - 1)) == 0) /** * Checks if a byte is in an interval. * * This macro returns true if a byte value is in the interval of [min, max). * * @param a The byte value to check * @param min The minimum of the interval * @param max The maximum of the interval * @see IS_INSIDE_1D */ #define IS_BYTE_INSIDE(a, min, max) ((byte)((a) - (min)) < (byte)((max) - (min))) /** * Checks if an int is in an interval. * * This macro returns true if a integer value is in the interval of [min, max). * * @param a The integer value to check * @param min The minimum of the interval * @param max The maximum of the interval * @see IS_INSIDE_1D */ #define IS_INT_INSIDE(a, min, max) ((uint)((a) - (min)) < (uint)((max) - (min))) /** * Flips a coin with a given probability. * * This macro can be used to get true or false randomized according to a * given probability. The parameter a and b create a percent value with * (a/b). The macro returns true in (a/b) percent. * * @param a The numerator of the fraction * @param b The denominator of the fraction, must of course not be null * @return True in (a/b) percent */ #define CHANCE16(a, b) ((uint16)Random() <= (uint16)((65536 * (a)) / (b))) /** * Flips a coin with a given probability and saves the randomize-number in a variable. * * This macro uses the same parameters as the CHANCE16 marco. The third parameter * must be a variable the randomize-number from Random() is saved in. * * @param a The numerator of the fraction, see CHANCE16 * @param b The denominator of the fraction, see CHANCE16 * @param r The variable to save the randomize-number from Random() * @return True in (a/b) percent */ #define CHANCE16R(a, b, r) ((uint16)(r = Random()) <= (uint16)((65536 * (a)) / (b))) /** * Checks if a given randomize-number is below a given probability. * * This macro is used to check if the given probability by the fraction of (a/b) * is greater than the given randomize-number v. * * @param a The numerator of the fraction, see CHANCE16 * @param b The denominator of the fraction, see CHANCE16 * @param v The given randomize-number * @return True if v is less or equals (a/b) */ #define CHANCE16I(a, b, v) ((uint16)(v) <= (uint16)((65536 * (a)) / (b))) #define for_each_bit(_i, _b) \ for (_i = 0; _b != 0; _i++, _b >>= 1) \ if (_b & 1) #define abs myabs static inline uint16 ReadLE16Aligned(const void* x) { return FROM_LE16(*(const uint16*)x); } static inline uint16 ReadLE16Unaligned(const void* x) { #ifdef OTTD_ALIGNMENT return ((const byte*)x)[0] | ((const byte*)x)[1] << 8; #else return FROM_LE16(*(const uint16*)x); #endif } /** * ROtate x Left/Right by n (must be >= 0) * @note Assumes a byte has 8 bits */ #define ROL(x, n) ((x) << (n) | (x) >> (sizeof(x) * 8 - (n))) #define ROR(x, n) ((x) >> (n) | (x) << (sizeof(x) * 8 - (n))) /** * Return the smallest multiple of n equal or greater than x * @note n must be a power of 2 */ #define ALIGN(x, n) (((x) + (n) - 1) & ~((n) - 1)) /** return the largest value that can be entered in a variable. */ #define MAX_UVALUE(type) ((type)~(type)0) #endif /* MACROS_H */