/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file rail.h Rail specific functions. */ #ifndef RAIL_H #define RAIL_H #include "rail_type.h" #include "track_type.h" #include "gfx_type.h" #include "core/bitmath_func.hpp" #include "economy_func.h" #include "slope_type.h" #include "strings_type.h" /** Railtype flags. */ enum RailTypeFlags { RTF_CATENARY = 0, ///< Bit number for drawing a catenary. RTF_NO_LEVEL_CROSSING = 1, ///< Bit number for disallowing level crossings. RTFB_NONE = 0, ///< All flags cleared. RTFB_CATENARY = 1 << RTF_CATENARY, ///< Value for drawing a catenary. RTFB_NO_LEVEL_CROSSING = 1 << RTF_NO_LEVEL_CROSSING, ///< Value for disallowing level crossings. }; DECLARE_ENUM_AS_BIT_SET(RailTypeFlags) struct SpriteGroup; /** Sprite groups for a railtype. */ enum RailTypeSpriteGroup { RTSG_CURSORS, ///< Cursor and toolbar icon images RTSG_OVERLAY, ///< Images for overlaying track RTSG_GROUND, ///< Main group of ground images RTSG_TUNNEL, ///< Main group of ground images for snow or desert RTSG_WIRES, ///< Catenary wires RTSG_PYLONS, ///< Catenary pylons RTSG_BRIDGE, ///< Bridge surface images RTSG_CROSSING, ///< Level crossing overlay images RTSG_DEPOT, ///< Depot images RTSG_FENCES, ///< Fence images RTSG_END, }; /** * Offsets for sprites within an overlay/underlay set. * These are the same for overlay and underlay sprites. */ enum RailTrackOffset { RTO_X, ///< Piece of rail in X direction RTO_Y, ///< Piece of rail in Y direction RTO_N, ///< Piece of rail in northern corner RTO_S, ///< Piece of rail in southern corner RTO_E, ///< Piece of rail in eastern corner RTO_W, ///< Piece of rail in western corner RTO_SLOPE_NE, ///< Piece of rail on slope with north-east raised RTO_SLOPE_SE, ///< Piece of rail on slope with south-east raised RTO_SLOPE_SW, ///< Piece of rail on slope with south-west raised RTO_SLOPE_NW, ///< Piece of rail on slope with north-west raised RTO_CROSSING_XY, ///< Crossing of X and Y rail, with ballast RTO_JUNCTION_SW, ///< Ballast for junction 'pointing' SW RTO_JUNCTION_NE, ///< Ballast for junction 'pointing' NE RTO_JUNCTION_SE, ///< Ballast for junction 'pointing' SE RTO_JUNCTION_NW, ///< Ballast for junction 'pointing' NW RTO_JUNCTION_NSEW,///< Ballast for full junction }; /** * Offsets for spries within a bridge surface overlay set. */ enum RailTrackBridgeOffset { RTBO_X, ///< Piece of rail in X direction RTBO_Y, ///< Piece of rail in Y direction RTBO_SLOPE, ///< Sloped rail pieces, in order NE, SE, SW, NW }; /** * Offsets from base sprite for fence sprites. These are in the order of * the sprites in the original data files. */ enum RailFenceOffset { RFO_FLAT_X, RFO_FLAT_Y, RFO_FLAT_VERT, RFO_FLAT_HORZ, RFO_SLOPE_SW, RFO_SLOPE_SE, RFO_SLOPE_NE, RFO_SLOPE_NW, }; /** * This struct contains all the info that is needed to draw and construct tracks. */ struct RailtypeInfo { /** * Struct containing the main sprites. @note not all sprites are listed, but only * the ones used directly in the code */ struct { SpriteID track_y; ///< single piece of rail in Y direction, with ground SpriteID track_ns; ///< two pieces of rail in North and South corner (East-West direction) SpriteID ground; ///< ground sprite for a 3-way switch SpriteID single_x; ///< single piece of rail in X direction, without ground SpriteID single_y; ///< single piece of rail in Y direction, without ground SpriteID single_n; ///< single piece of rail in the northern corner SpriteID single_s; ///< single piece of rail in the southern corner SpriteID single_e; ///< single piece of rail in the eastern corner SpriteID single_w; ///< single piece of rail in the western corner SpriteID single_sloped;///< single piecs of rail for slopes SpriteID crossing; ///< level crossing, rail in X direction SpriteID tunnel; ///< tunnel sprites base } base_sprites; /** * struct containing the sprites for the rail GUI. @note only sprites referred to * directly in the code are listed */ struct { SpriteID build_ns_rail; ///< button for building single rail in N-S direction SpriteID build_x_rail; ///< button for building single rail in X direction SpriteID build_ew_rail; ///< button for building single rail in E-W direction SpriteID build_y_rail; ///< button for building single rail in Y direction SpriteID auto_rail; ///< button for the autorail construction SpriteID build_depot; ///< button for building depots SpriteID build_tunnel; ///< button for building a tunnel SpriteID convert_rail; ///< button for converting rail } gui_sprites; struct { CursorID rail_ns; ///< Cursor for building rail in N-S direction CursorID rail_swne; ///< Cursor for building rail in X direction CursorID rail_ew; ///< Cursor for building rail in E-W direction CursorID rail_nwse; ///< Cursor for building rail in Y direction CursorID autorail; ///< Cursor for autorail tool CursorID depot; ///< Cursor for building a depot CursorID tunnel; ///< Cursor for building a tunnel CursorID convert; ///< Cursor for converting track } cursor; struct { StringID toolbar_caption; StringID menu_text; StringID build_caption; StringID replace_text; StringID new_loco; } strings; /** sprite number difference between a piece of track on a snowy ground and the corresponding one on normal ground */ SpriteID snow_offset; /** bitmask to the OTHER railtypes on which an engine of THIS railtype generates power */ RailTypes powered_railtypes; /** bitmask to the OTHER railtypes on which an engine of THIS railtype can physically travel */ RailTypes compatible_railtypes; /** * Offset between the current railtype and normal rail. This means that:

* 1) All the sprites in a railset MUST be in the same order. This order * is determined by normal rail. Check sprites 1005 and following for this order

* 2) The position where the railtype is loaded must always be the same, otherwise * the offset will fail. * @note: Something more flexible might be desirable in the future. */ SpriteID total_offset; /** * Bridge offset */ SpriteID bridge_offset; /** * Offset to add to ground sprite when drawing custom waypoints / stations */ byte custom_ground_offset; /** * Multiplier for curve maximum speed advantage */ byte curve_speed; /** * Bit mask of rail type flags */ RailTypeFlags flags; /** * Cost multiplier for building this rail type */ uint16 cost_multiplier; /** * Acceleration type of this rail type */ uint8 acceleration_type; /** * Maximum speed for vehicles travelling on this rail type */ uint16 max_speed; /** * Unique 32 bit rail type identifier */ RailTypeLabel label; /** * Colour on mini-map */ byte map_colour; /** * Sprite groups for resolving sprites */ const SpriteGroup *group[RTSG_END]; inline bool UsesOverlay() const { return this->group[RTSG_GROUND] != NULL; } }; /** * Returns a pointer to the Railtype information for a given railtype * @param railtype the rail type which the information is requested for * @return The pointer to the RailtypeInfo */ static inline const RailtypeInfo *GetRailTypeInfo(RailType railtype) { extern RailtypeInfo _railtypes[RAILTYPE_END]; assert(railtype < RAILTYPE_END); return &_railtypes[railtype]; } /** * Checks if an engine of the given RailType can drive on a tile with a given * RailType. This would normally just be an equality check, but for electric * rails (which also support non-electric engines). * @return Whether the engine can drive on this tile. * @param enginetype The RailType of the engine we are considering. * @param tiletype The RailType of the tile we are considering. */ static inline bool IsCompatibleRail(RailType enginetype, RailType tiletype) { return HasBit(GetRailTypeInfo(enginetype)->compatible_railtypes, tiletype); } /** * Checks if an engine of the given RailType got power on a tile with a given * RailType. This would normally just be an equality check, but for electric * rails (which also support non-electric engines). * @return Whether the engine got power on this tile. * @param enginetype The RailType of the engine we are considering. * @param tiletype The RailType of the tile we are considering. */ static inline bool HasPowerOnRail(RailType enginetype, RailType tiletype) { return HasBit(GetRailTypeInfo(enginetype)->powered_railtypes, tiletype); } /** * Test if a RailType disallows build of level crossings. * @param rt The RailType to check. * @return Whether level crossings are not allowed. */ static inline bool RailNoLevelCrossings(RailType rt) { return HasBit(GetRailTypeInfo(rt)->flags, RTF_NO_LEVEL_CROSSING); } /** * Returns the cost of building the specified railtype. * @param railtype The railtype being built. * @return The cost multiplier. */ static inline Money RailBuildCost(RailType railtype) { assert(railtype < RAILTYPE_END); return (_price[PR_BUILD_RAIL] * GetRailTypeInfo(railtype)->cost_multiplier) >> 3; } /** * Returns the 'cost' of clearing the specified railtype. * @param railtype The railtype being removed. * @return The cost. */ static inline Money RailClearCost(RailType railtype) { /* Clearing rail in fact earns money, but if the build cost is set * very low then a loophole exists where money can be made. * In this case we limit the removal earnings to 3/4s of the build * cost. */ assert(railtype < RAILTYPE_END); return max(_price[PR_CLEAR_RAIL], -RailBuildCost(railtype) * 3 / 4); } /** * Calculates the cost of rail conversion * @param from The railtype we are converting from * @param to The railtype we are converting to * @return Cost per TrackBit */ static inline Money RailConvertCost(RailType from, RailType to) { /* rail -> el. rail * calculate the price as 5 / 4 of (cost build el. rail) - (cost build rail) * (the price of workers to get to place is that 1/4) */ if (HasPowerOnRail(from, to)) { Money cost = ((RailBuildCost(to) - RailBuildCost(from)) * 5) >> 2; if (cost != 0) return cost; } /* el. rail -> rail * calculate the price as 1 / 4 of (cost build el. rail) - (cost build rail) * (the price of workers is 1 / 4 + price of copper sold to a recycle center) */ if (HasPowerOnRail(to, from)) { Money cost = (RailBuildCost(from) - RailBuildCost(to)) >> 2; if (cost != 0) return cost; } /* make the price the same as remove + build new type */ return RailBuildCost(to) + RailClearCost(from); } void DrawTrainDepotSprite(int x, int y, int image, RailType railtype); int TicksToLeaveDepot(const Train *v); Foundation GetRailFoundation(Slope tileh, TrackBits bits); /** * Finds out if a company has a certain railtype available * @param company the company in question * @param railtype requested RailType * @return true if company has requested RailType available */ bool HasRailtypeAvail(const CompanyID company, const RailType railtype); /** * Validate functions for rail building. * @param rail the railtype to check. * @return true if the current company may build the rail. */ bool ValParamRailtype(const RailType rail); /** * Returns the "best" railtype a company can build. * As the AI doesn't know what the BEST one is, we have our own priority list * here. When adding new railtypes, modify this function * @param company the company "in action" * @return The "best" railtype a company has available */ RailType GetBestRailtype(const CompanyID company); /** * Get the rail types the given company can build. * @param c the company to get the rail types for. * @return the rail types. */ RailTypes GetCompanyRailtypes(const CompanyID c); /** * Get the rail type for a given label. * @param label the railtype label. * @return the railtype. */ RailType GetRailTypeByLabel(RailTypeLabel label); /** * Reset all rail type information to its default values. */ void ResetRailTypes(); /** * Resolve sprites of custom rail types */ void InitRailTypes(); /** * Allocate a new rail type label */ RailType AllocateRailType(RailTypeLabel label); #endif /* RAIL_H */