#include "stdafx.h" #include "ttd.h" #include "pathfind.h" // remember which tiles we have already visited so we don't visit them again. static bool TPFSetTileBit(TrackPathFinder *tpf, uint tile, int dir) { uint hash, val, offs; TrackPathFinderLink *link, *new_link; uint bits = 1 << dir; if (tpf->disable_tile_hash) return true; hash = PATHFIND_HASH_TILE(tile); val = tpf->hash_head[hash]; if (val == 0) { /* unused hash entry, set the appropriate bit in it and return true * to indicate that a bit was set. */ tpf->hash_head[hash] = bits; tpf->hash_tile[hash] = (TileIndex)tile; return true; } else if (!(val & 0x8000)) { /* single tile */ if ( (TileIndex)tile == tpf->hash_tile[hash] ) { /* found another bit for the same tile, * check if this bit is already set, if so, return false */ if (val & bits) return false; /* otherwise set the bit and return true to indicate that the bit * was set */ tpf->hash_head[hash] = val | bits; return true; } else { /* two tiles with the same hash, need to make a link */ /* allocate a link. if out of links, handle this by returning * that a tile was already visisted. */ if (tpf->num_links_left == 0) return false; tpf->num_links_left--; link = tpf->new_link++; /* move the data that was previously in the hash_??? variables * to the link struct, and let the hash variables point to the link */ link->tile = tpf->hash_tile[hash]; tpf->hash_tile[hash] = PATHFIND_GET_LINK_OFFS(tpf, link); link->flags = tpf->hash_head[hash]; tpf->hash_head[hash] = 0xFFFF; /* multi link */ link->next = 0xFFFF; } } else { /* a linked list of many tiles, * find the one corresponding to the tile, if it exists. * otherwise make a new link */ offs = tpf->hash_tile[hash]; do { link = PATHFIND_GET_LINK_PTR(tpf, offs); if ( (TileIndex)tile == link->tile) { /* found the tile in the link list, * check if the bit was alrady set, if so return false to indicate that the * bit was already set */ if (link->flags & bits) return false; link->flags |= bits; return true; } } while ((offs=link->next) != 0xFFFF); } /* get here if we need to add a new link to link, * first, allocate a new link, in the same way as before */ if (tpf->num_links_left == 0) return false; tpf->num_links_left--; new_link = tpf->new_link++; /* then fill the link with the new info, and establish a ptr from the old * link to the new one */ new_link->tile = (TileIndex)tile; new_link->flags = bits; new_link->next = 0xFFFF; link->next = PATHFIND_GET_LINK_OFFS(tpf, new_link); return true; } static const byte _bits_mask[4] = { 0x19, 0x16, 0x25, 0x2A, }; static const byte _tpf_new_direction[14] = { 0,1,0,1,2,1, 0,0, 2,3,3,2,3,0, }; static const byte _tpf_prev_direction[14] = { 0,1,1,0,1,2, 0,0, 2,3,2,3,0,3, }; static const byte _otherdir_mask[4] = { 0x10, 0, 0x5, 0x2A, }; #ifdef DEBUG_TILE_PUSH extern void dbg_push_tile(uint tile, int track); extern void dbg_pop_tile(); #endif void TPFMode2(TrackPathFinder *tpf, uint tile, int direction) { uint bits; int i; RememberData rd; // This addition will sometimes overflow by a single tile. // The use of TILE_MASK here makes sure that we still point at a valid // tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail. tile = TILE_MASK(tile + _tileoffs_by_dir[direction]); if (++tpf->rd.cur_length > 50) return; bits = GetTileTrackStatus(tile, tpf->tracktype); bits = (byte)((bits | (bits >> 8)) & _bits_mask[direction]); if (bits == 0) return; assert(GET_TILE_X(tile) != 255 && GET_TILE_Y(tile) != 255); if ( (bits & (bits - 1)) == 0 ) { /* only one direction */ i = 0; while (!(bits&1)) i++, bits>>=1; rd = tpf->rd; goto continue_here; } /* several directions */ i=0; do { if (!(bits & 1)) continue; rd = tpf->rd; // Change direction 4 times only if ((byte)i != tpf->rd.pft_var6) { if(++tpf->rd.depth > 4) { tpf->rd = rd; return; } tpf->rd.pft_var6 = (byte)i; } continue_here:; tpf->the_dir = HASBIT(_otherdir_mask[direction],i) ? (i+8) : i; #ifdef DEBUG_TILE_PUSH dbg_push_tile(tile, tpf->the_dir); #endif if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) { TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]); } #ifdef DEBUG_TILE_PUSH dbg_pop_tile(); #endif tpf->rd = rd; } while (++i, bits>>=1); } static const int8 _get_tunlen_inc[5] = { -16, 0, 16, 0, -16 }; /* Returns the end tile and the length of a tunnel. The length does not * include the starting tile (entry), it does include the end tile (exit). */ FindLengthOfTunnelResult FindLengthOfTunnel(uint tile, int direction) { FindLengthOfTunnelResult flotr; int x,y; byte z; flotr.length = 0; x = GET_TILE_X(tile) * 16; y = GET_TILE_Y(tile) * 16; z = GetSlopeZ(x+8, y+8); for(;;) { flotr.length++; x += _get_tunlen_inc[direction]; y += _get_tunlen_inc[direction+1]; tile = TILE_FROM_XY(x,y); if (IS_TILETYPE(tile, MP_TUNNELBRIDGE) && (_map5[tile] & 0xF0) == 0 && //((_map5[tile]>>2)&3) == type && // This is //not necesary to check, right? ((_map5[tile] & 3)^2) == direction && GetSlopeZ(x+8, y+8) == z) break; } flotr.tile = tile; return flotr; } static const uint16 _tpfmode1_and[4] = { 0x1009, 0x16, 0x520, 0x2A00 }; static uint SkipToEndOfTunnel(TrackPathFinder *tpf, uint tile, int direction) { FindLengthOfTunnelResult flotr; TPFSetTileBit(tpf, tile, 14); flotr = FindLengthOfTunnel(tile, direction); tpf->rd.cur_length += flotr.length; TPFSetTileBit(tpf, flotr.tile, 14); return flotr.tile; } const byte _ffb_64[128] = { 0,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 0,0,0,2,0,4,4,6, 0,8,8,10,8,12,12,14, 0,16,16,18,16,20,20,22, 16,24,24,26,24,28,28,30, 0,32,32,34,32,36,36,38, 32,40,40,42,40,44,44,46, 32,48,48,50,48,52,52,54, 48,56,56,58,56,60,60,62, }; void TPFMode1(TrackPathFinder *tpf, uint tile, int direction) { uint bits; int i; RememberData rd; uint tile_org = tile; if (IS_TILETYPE(tile, MP_TUNNELBRIDGE) && (_map5[tile] & 0xF0)==0) { if ((_map5[tile] & 3) != direction || ((_map5[tile]>>1)&6) != tpf->tracktype) return; tile = SkipToEndOfTunnel(tpf, tile, direction); } tile += _tileoffs_by_dir[direction]; tpf->rd.cur_length++; bits = GetTileTrackStatus(tile, tpf->tracktype); if ((byte)bits != tpf->var2) { bits &= _tpfmode1_and[direction]; bits = bits | (bits>>8); } bits &= 0xBF; if (bits != 0) { if (!tpf->disable_tile_hash || (tpf->rd.cur_length <= 64 && (KILL_FIRST_BIT(bits) == 0 || ++tpf->rd.depth <= 7))) { do { i = FIND_FIRST_BIT(bits); bits = KILL_FIRST_BIT(bits); tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i; rd = tpf->rd; #ifdef DEBUG_TILE_PUSH dbg_push_tile(tile, tpf->the_dir); #endif if (TPFSetTileBit(tpf, tile, tpf->the_dir) && !tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) { TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]); } #ifdef DEBUG_TILE_PUSH dbg_pop_tile(); #endif tpf->rd = rd; } while (bits != 0); } } /* the next is only used when signals are checked. * seems to go in 2 directions simultaneously */ /* if i can get rid of this, tail end recursion can be used to minimize * stack space dramatically. */ if (tpf->hasbit_13) return; tile = tile_org; direction ^= 2; bits = GetTileTrackStatus(tile, tpf->tracktype); bits |= (bits >> 8); if ( (byte)bits != tpf->var2) { bits &= _bits_mask[direction]; } bits &= 0xBF; if (bits == 0) return; do { i = FIND_FIRST_BIT(bits); bits = KILL_FIRST_BIT(bits); tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i; rd = tpf->rd; if (TPFSetTileBit(tpf, tile, tpf->the_dir) && !tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) { TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]); } tpf->rd = rd; } while (bits != 0); } void FollowTrack(uint tile, uint16 flags, byte direction, TPFEnumProc *enum_proc, TPFAfterProc *after_proc, void *data) { TrackPathFinder *tpf = alloca(sizeof(TrackPathFinder)); assert(direction < 4); /* initialize path finder variables */ tpf->userdata = data; tpf->enum_proc = enum_proc; tpf->new_link = tpf->links; tpf->num_links_left = 0x400; tpf->rd.cur_length = 0; tpf->rd.depth = 0; tpf->rd.pft_var6 = 0; tpf->var2 = HASBIT(flags, 15) ? 0x43 : 0xFF; /* 0x8000 */ tpf->disable_tile_hash = HASBIT(flags, 12) != 0; /* 0x1000 */ tpf->hasbit_13 = HASBIT(flags, 13) != 0; /* 0x2000 */ tpf->tracktype = (byte)flags; if (HASBIT(flags, 11)) { tpf->rd.pft_var6 = 0xFF; tpf->enum_proc(tile, data, 0, 0, 0); TPFMode2(tpf, tile, direction); } else { /* clear the hash_heads */ memset(tpf->hash_head, 0, sizeof(tpf->hash_head)); TPFMode1(tpf, tile, direction); } if (after_proc != NULL) after_proc(tpf); } typedef struct { TileIndex tile; uint16 cur_length; byte track; byte depth; byte state; byte first_track; } StackedItem; static const byte _new_dir[6][4] = { {0,0xff,2,0xff,}, {0xff,1,0xff,3,}, {0xff,0,3,0xff,}, {1,0xff,0xff,2,}, {3,2,0xff,0xff,}, {0xff,0xff,1,0,}, }; static const byte _new_track[6][4] = { {0,0xff,8,0xff,}, {0xff,1,0xff,9,}, {0xff,2,10,0xff,}, {3,0xff,0xff,11,}, {12,4,0xff,0xff,}, {0xff,0xff,5,13,}, }; typedef struct HashLink { TileIndex tile; uint16 typelength; uint16 next; } HashLink; typedef struct { TPFEnumProc *enum_proc; void *userdata; byte tracktype; uint maxlength; HashLink *new_link; uint num_links_left; int nstack; StackedItem stack[256]; // priority queue of stacked items uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFC0 = length, 0x3F = type TileIndex hash_tile[0x400]; // tiles. or links. HashLink links[0x400]; // hash links } NewTrackPathFinder; #define NTP_GET_LINK_OFFS(tpf, link) ((byte*)(link) - (byte*)tpf->links) #define NTP_GET_LINK_PTR(tpf, link_offs) (HashLink*)((byte*)tpf->links + (link_offs)) #define ARR(i) tpf->stack[(i)-1] // called after a new element was added in the queue at the last index. // move it down to the proper position static void INLINE HeapifyUp(NewTrackPathFinder *tpf) { StackedItem si; int i = ++tpf->nstack; while (i != 1 && ARR(i).cur_length < ARR(i>>1).cur_length) { // the child element is larger than the parent item. // swap the child item and the parent item. si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si; i>>=1; } } // called after the element 0 was eaten. fill it with a new element static void INLINE HeapifyDown(NewTrackPathFinder *tpf) { StackedItem si; int i = 1, j; int n = --tpf->nstack; if (n == 0) return; // heap is empty so nothing to do? // copy the last item to index 0. we use it as base for heapify. ARR(1) = ARR(n+1); while ((j=i*2) <= n) { // figure out which is smaller of the children. if (j != n && ARR(j).cur_length > ARR(j+1).cur_length) j++; // right item is smaller assert(i <= n && j <= n); if (ARR(i).cur_length <= ARR(j).cur_length) break; // base elem smaller than smallest, done! // swap parent with the child si = ARR(i); ARR(i) = ARR(j); ARR(j) = si; i = j; } } // mark a tile as visited and store the length of the path. // if we already had a better path to this tile, return false. // otherwise return true. static bool NtpVisit(NewTrackPathFinder *tpf, uint tile, uint dir, uint length) { uint hash,head; HashLink *link, *new_link; assert(length < 1024); hash = PATHFIND_HASH_TILE(tile); // never visited before? if ((head=tpf->hash_head[hash]) == 0) { tpf->hash_tile[hash] = tile; tpf->hash_head[hash] = dir | (length << 2); return true; } if (head != 0xffff) { if ( (TileIndex)tile == tpf->hash_tile[hash] && (head & 0x3) == dir ) { // longer length if (length >= (head >> 2)) return false; tpf->hash_head[hash] = dir | (length << 2); return true; } // two tiles with the same hash, need to make a link // allocate a link. if out of links, handle this by returning // that a tile was already visisted. if (tpf->num_links_left == 0) return false; tpf->num_links_left--; link = tpf->new_link++; /* move the data that was previously in the hash_??? variables * to the link struct, and let the hash variables point to the link */ link->tile = tpf->hash_tile[hash]; tpf->hash_tile[hash] = NTP_GET_LINK_OFFS(tpf, link); link->typelength = tpf->hash_head[hash]; tpf->hash_head[hash] = 0xFFFF; /* multi link */ link->next = 0xFFFF; } else { // a linked list of many tiles, // find the one corresponding to the tile, if it exists. // otherwise make a new link uint offs = tpf->hash_tile[hash]; do { link = NTP_GET_LINK_PTR(tpf, offs); if ( (TileIndex)tile == link->tile && (uint)(link->typelength & 0x3) == dir) { if (length >= (uint)(link->typelength >> 2)) return false; link->typelength = dir | (length << 2); return true; } } while ((offs=link->next) != 0xFFFF); } /* get here if we need to add a new link to link, * first, allocate a new link, in the same way as before */ if (tpf->num_links_left == 0) return false; tpf->num_links_left--; new_link = tpf->new_link++; /* then fill the link with the new info, and establish a ptr from the old * link to the new one */ new_link->tile = (TileIndex)tile; new_link->typelength = dir | (length << 2); new_link->next = 0xFFFF; link->next = NTP_GET_LINK_OFFS(tpf, new_link); return true; } static bool NtpCheck(NewTrackPathFinder *tpf, uint tile, uint dir, uint length) { uint hash,head,offs; HashLink *link; hash = PATHFIND_HASH_TILE(tile); head=tpf->hash_head[hash]; assert(head); if (head != 0xffff) { assert( tpf->hash_tile[hash] == tile && (head & 3) == dir); assert( (head >> 2) <= length); return length == (head >> 2); } // else it's a linked list of many tiles offs = tpf->hash_tile[hash]; for(;;) { link = NTP_GET_LINK_PTR(tpf, offs); if ( (TileIndex)tile == link->tile && (uint)(link->typelength & 0x3) == dir) { assert( (uint)(link->typelength >> 2) <= length); return length == (uint)(link->typelength >> 2); } offs = link->next; assert(offs != 0xffff); } } // new more optimized pathfinder for trains... void NTPEnum(NewTrackPathFinder *tpf, uint tile, uint direction) { uint bits, tile_org; int i; StackedItem si; FindLengthOfTunnelResult flotr; si.cur_length = 0; si.depth = 0; si.state = 0; restart: if (IS_TILETYPE(tile, MP_TUNNELBRIDGE) && (_map5[tile] & 0xF0)==0) { /* This is a tunnel tile */ if ( (uint)(_map5[tile] & 3) != (direction ^ 2)) { /* ^ 2 is reversing the direction */ /* We are not just driving out of the tunnel */ if ( (uint)(_map5[tile] & 3) != direction || ((_map5[tile]>>1)&6) != tpf->tracktype) /* We are not driving into the tunnel, or it * is an invalid tunnel */ goto popnext; flotr = FindLengthOfTunnel(tile, direction); si.cur_length += flotr.length; tile = flotr.tile; } } // remember the start tile so we know if we're in an inf loop. tile_org = tile; for(;;) { tile += _tileoffs_by_dir[direction]; // too long search length? bail out. if (++si.cur_length >= tpf->maxlength) goto popnext; // not a regular rail tile? if (!IS_TILETYPE(tile, MP_RAILWAY) || (bits = _map5[tile]) & 0xC0) { bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction]; bits = (bits | (bits >> 8)) & 0x3F; break; } // regular rail tile, determine the tracks that are actually reachable. bits &= _bits_mask[direction]; if (bits == 0) goto popnext; // no tracks there? stop searching. // complex tile?, let the generic handler handle that.. if (KILL_FIRST_BIT(bits) != 0) break; // don't bother calling the callback when we have regular tracks only. // it's usually not needed anyway. that will speed up things. direction = _new_dir[FIND_FIRST_BIT(bits)][direction]; assert(direction != 0xFF); if (tile == tile_org) goto popnext; // detect infinite loop.. } if (!bits) goto popnext; // if only one reachable track, use tail recursion optimization. if (KILL_FIRST_BIT(bits) == 0) { i = _new_track[FIND_FIRST_BIT(bits)][direction]; // call the callback if (tpf->enum_proc(tile, tpf->userdata, i, si.cur_length, &si.state)) goto popnext; // we should stop searching in this direction. // we should continue searching. determine new direction. direction = _tpf_new_direction[i]; goto restart; // use tail recursion optimization. } // too high recursion depth.. bail out.. if (si.depth >= _patches.pf_maxdepth) goto popnext; si.depth++; // increase recursion depth. // see if this tile was already visited..? if (NtpVisit(tpf, tile, direction, si.cur_length)) { // push all possible alternatives si.tile = tile; do { si.track = _new_track[FIND_FIRST_BIT(bits)][direction]; // out of stack items, bail out? if (tpf->nstack >= lengthof(tpf->stack)) break; tpf->stack[tpf->nstack] = si; HeapifyUp(tpf); } while ((bits = KILL_FIRST_BIT(bits)) != 0); // if this is the first recursion step, we need to fill the first_track member. // so the code outside knows which path is better. // also randomize the order in which we search through them. if (si.depth == 1) { uint32 r = Random(); assert(tpf->nstack == 2 || tpf->nstack == 3); if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track); if (tpf->nstack != 2) { byte t = tpf->stack[2].track; if (r&2) swap_byte(&tpf->stack[0].track, &t); if (r&4) swap_byte(&tpf->stack[1].track, &t); tpf->stack[2].first_track = tpf->stack[2].track = t; } tpf->stack[0].first_track = tpf->stack[0].track; tpf->stack[1].first_track = tpf->stack[1].track; } } popnext: // where to continue. do { if (tpf->nstack == 0) return; // nothing left? si = tpf->stack[0]; tile = si.tile; HeapifyDown(tpf); } while ( !NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length) || // already have better path to that tile? tpf->enum_proc(tile, tpf->userdata, si.track, si.cur_length, &si.state) ); direction = _tpf_new_direction[si.track]; goto restart; } // new pathfinder for trains. better and faster. void NewTrainPathfind(uint tile, byte direction, TPFEnumProc *enum_proc, void *data, byte *cache) { if (!_patches.new_pathfinding) { FollowTrack(tile, 0x3000 | TRANSPORT_RAIL, direction, enum_proc, NULL, data); } else { NewTrackPathFinder *tpf; tpf = alloca(sizeof(NewTrackPathFinder)); tpf->userdata = data; tpf->enum_proc = enum_proc; tpf->tracktype = 0; tpf->maxlength = _patches.pf_maxlength; tpf->nstack = 0; tpf->new_link = tpf->links; tpf->num_links_left = 0x400; memset(tpf->hash_head, 0, sizeof(tpf->hash_head)); NTPEnum(tpf, tile, direction); } }