#include "stdafx.h" #include "openttd.h" #include "queue.h" static void Stack_Clear(Queue* q, bool free_values) { uint i; if (free_values) for (i=0;idata.stack.size;i++) free(q->data.stack.elements[i]); q->data.stack.size = 0; } static void Stack_Free(Queue* q, bool free_values) { q->clear(q, free_values); free(q->data.stack.elements); if (q->freeq) free(q); } static bool Stack_Push(Queue* q, void* item, int priority) { if (q->data.stack.size == q->data.stack.max_size) return false; q->data.stack.elements[q->data.stack.size++] = item; return true; } static void* Stack_Pop(Queue* q) { void* result; if (q->data.stack.size == 0) return NULL; result = q->data.stack.elements[--q->data.stack.size]; return result; } static bool Stack_Delete(Queue* q, void* item, int priority) { return false; } static Queue* init_stack(Queue* q, uint max_size) { q->push = Stack_Push; q->pop = Stack_Pop; q->del = Stack_Delete; q->clear = Stack_Clear; q->free = Stack_Free; q->data.stack.max_size = max_size; q->data.stack.size = 0; q->data.stack.elements = malloc(max_size * sizeof(void*)); q->freeq = false; return q; } Queue* new_Stack(uint max_size) { Queue* q = malloc(sizeof(Queue)); init_stack(q, max_size); q->freeq = true; return q; } /* * Fifo */ static void Fifo_Clear(Queue* q, bool free_values) { uint head, tail; if (free_values) { head = q->data.fifo.head; tail = q->data.fifo.tail; /* cache for speed */ while (head != tail) { free(q->data.fifo.elements[tail]); tail = (tail + 1) % q->data.fifo.max_size; } } q->data.fifo.head = q->data.fifo.tail = 0; } static void Fifo_Free(Queue* q, bool free_values) { q->clear(q, free_values); free(q->data.fifo.elements); if (q->freeq) free(q); } static bool Fifo_Push(Queue* q, void* item, int priority) { uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size; if (next == q->data.fifo.tail) return false; q->data.fifo.elements[q->data.fifo.head] = item; q->data.fifo.head = next; return true; } static void* Fifo_Pop(Queue* q) { void* result; if (q->data.fifo.head == q->data.fifo.tail) return NULL; result = q->data.fifo.elements[q->data.fifo.tail]; q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size; return result; } static bool Fifo_Delete(Queue* q, void* item, int priority) { return false; } static Queue* init_fifo(Queue* q, uint max_size) { q->push = Fifo_Push; q->pop = Fifo_Pop; q->del = Fifo_Delete; q->clear = Fifo_Clear; q->free = Fifo_Free; q->data.fifo.max_size = max_size; q->data.fifo.head = 0; q->data.fifo.tail = 0; q->data.fifo.elements = malloc(max_size * sizeof(void*)); q->freeq = false; return q; } Queue* new_Fifo(uint max_size) { Queue* q = malloc(sizeof(Queue)); init_fifo(q, max_size); q->freeq = true; return q; } /* * Insertion Sorter */ static void InsSort_Clear(Queue* q, bool free_values) { InsSortNode* node = q->data.inssort.first; InsSortNode* prev; while (node != NULL) { if (free_values) free(node->item); prev = node; node = node->next; free(prev); } q->data.inssort.first = NULL; } static void InsSort_Free(Queue* q, bool free_values) { q->clear(q, free_values); if (q->freeq) free(q); } static bool InsSort_Push(Queue* q, void* item, int priority) { InsSortNode* newnode = malloc(sizeof(InsSortNode)); if (newnode == NULL) return false; newnode->item = item; newnode->priority = priority; if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) { newnode->next = q->data.inssort.first; q->data.inssort.first = newnode; } else { InsSortNode* node = q->data.inssort.first; while( node != NULL ) { if (node->next == NULL || node->next->priority >= priority) { newnode->next = node->next; node->next = newnode; break; } node = node->next; } } return true; } static void* InsSort_Pop(Queue* q) { InsSortNode* node = q->data.inssort.first; void* result; if (node == NULL) return NULL; result = node->item; q->data.inssort.first = q->data.inssort.first->next; if (q->data.inssort.first) assert(q->data.inssort.first->priority >= node->priority); free(node); return result; } static bool InsSort_Delete(Queue* q, void* item, int priority) { return false; } void init_InsSort(Queue* q) { q->push = InsSort_Push; q->pop = InsSort_Pop; q->del = InsSort_Delete; q->clear = InsSort_Clear; q->free = InsSort_Free; q->data.inssort.first = NULL; q->freeq = false; } Queue* new_InsSort(void) { Queue* q = malloc(sizeof(Queue)); init_InsSort(q); q->freeq = true; return q; } /* * Binary Heap * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm */ #define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS) #define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE-1) // To make our life easy, we make the next define // Because Binary Heaps works with array from 1 to n, // and C with array from 0 to n-1, and we don't like typing // q->data.binaryheap.elements[i-1] every time, we use this define. #define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK] static void BinaryHeap_Clear(Queue* q, bool free_values) { /* Free all items if needed and free all but the first blocks of * memory */ uint i,j; for (i=0;idata.binaryheap.blocks;i++) { if (q->data.binaryheap.elements[i] == NULL) { /* No more allocated blocks */ break; } /* For every allocated block */ if (free_values) for (j=0;j<(1<data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i && (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) break; /* We're past the last element */ free(q->data.binaryheap.elements[i][j].item); } if (i != 0) { /* Leave the first block of memory alone */ free(q->data.binaryheap.elements[i]); q->data.binaryheap.elements[i] = NULL; } } q->data.binaryheap.size = 0; q->data.binaryheap.blocks = 1; } static void BinaryHeap_Free(Queue* q, bool free_values) { uint i; q->clear(q, free_values); for (i=0;idata.binaryheap.blocks;i++) { if (q->data.binaryheap.elements[i] == NULL) break; free(q->data.binaryheap.elements[i]); } if (q->freeq) free(q); } static bool BinaryHeap_Push(Queue* q, void* item, int priority) { #ifdef QUEUE_DEBUG printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size); #endif if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false; assert(q->data.binaryheap.size < q->data.binaryheap.max_size); if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) { /* The currently allocated blocks are full, allocate a new one */ assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0); q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode)); q->data.binaryheap.blocks++; #ifdef QUEUE_DEBUG printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE); #endif } // Add the item at the end of the array BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority; BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item; q->data.binaryheap.size++; // Now we are going to check where it belongs. As long as the parent is // bigger, we switch with the parent { int i, j; BinaryHeapNode temp; i = q->data.binaryheap.size; while (i > 1) { // Get the parent of this object (divide by 2) j = i / 2; // Is the parent bigger then the current, switch them if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) { temp = BIN_HEAP_ARR(j); BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i); BIN_HEAP_ARR(i) = temp; i = j; } else { // It is not, we're done! break; } } } return true; } static bool BinaryHeap_Delete(Queue* q, void* item, int priority) { #ifdef QUEUE_DEBUG printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size); #endif uint i = 0; // First, we try to find the item.. do { if (BIN_HEAP_ARR(i+1).item == item) break; i++; } while (i < q->data.binaryheap.size); // We did not find the item, so we return false if (i == q->data.binaryheap.size) return false; // Now we put the last item over the current item while decreasing the size of the elements q->data.binaryheap.size--; BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1); // Now the only thing we have to do, is resort it.. // On place i there is the item to be sorted.. let's start there { uint j; BinaryHeapNode temp; // Because of the fast that Binary Heap uses array from 1 to n, we need to increase // i with 1 i++; for (;;) { j = i; // Check if we have 2 childs if (2*j+1 <= q->data.binaryheap.size) { // Is this child smaller than the parent? if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; } // Yes, we _need_ to use i here, not j, because we want to have the smallest child // This way we get that straight away! if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; } // Do we have one child? } else if (2*j <= q->data.binaryheap.size) { if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; } } // One of our childs is smaller than we are, switch if (i != j) { temp = BIN_HEAP_ARR(j); BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i); BIN_HEAP_ARR(i) = temp; } else { // None of our childs is smaller, so we stay here.. stop :) break; } } } return true; } static void* BinaryHeap_Pop(Queue* q) { #ifdef QUEUE_DEBUG printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size); #endif void* result; if (q->data.binaryheap.size == 0) return NULL; // The best item is always on top, so give that as result result = BIN_HEAP_ARR(1).item; // And now we should get ride of this item... BinaryHeap_Delete(q,BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority); return result; } void init_BinaryHeap(Queue* q, uint max_size) { assert(q); q->push = BinaryHeap_Push; q->pop = BinaryHeap_Pop; q->del = BinaryHeap_Delete; q->clear = BinaryHeap_Clear; q->free = BinaryHeap_Free; q->data.binaryheap.max_size = max_size; q->data.binaryheap.size = 0; // We malloc memory in block of BINARY_HEAP_BLOCKSIZE // It autosizes when it runs out of memory q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE*sizeof(BinaryHeapNode)) + 1); q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode)); q->data.binaryheap.blocks = 1; q->freeq = false; #ifdef QUEUE_DEBUG printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024)); #endif } Queue* new_BinaryHeap(uint max_size) { Queue* q = malloc(sizeof(Queue)); init_BinaryHeap(q, max_size); q->freeq = true; return q; } // Because we don't want anyone else to bother with our defines #undef BIN_HEAP_ARR /* * Hash */ void init_Hash(Hash* h, Hash_HashProc* hash, uint num_buckets) { /* Allocate space for the Hash, the buckets and the bucket flags */ uint i; assert(h); #ifdef HASH_DEBUG debug("Allocated hash: %p", h); #endif h->hash = hash; h->size = 0; h->num_buckets = num_buckets; h->buckets = malloc(num_buckets * (sizeof(HashNode) + sizeof(bool))); #ifdef HASH_DEBUG debug("Buckets = %p", h->buckets); #endif h->buckets_in_use = (bool*)(h->buckets + num_buckets); h->freeh = false; for (i=0;ibuckets_in_use[i] = false; } Hash* new_Hash(Hash_HashProc* hash, int num_buckets) { Hash* h = malloc(sizeof(Hash)); init_Hash(h, hash, num_buckets); h->freeh = true; return h; } void delete_Hash(Hash* h, bool free_values) { uint i; /* Iterate all buckets */ for (i=0;inum_buckets;i++) { if (h->buckets_in_use[i]) { HashNode* node; /* Free the first value */ if (free_values) free(h->buckets[i].value); node = h->buckets[i].next; while (node != NULL) { HashNode* prev = node; node = node->next; /* Free the value */ if (free_values) free(prev->value); /* Free the node */ free(prev); } } } free(h->buckets); /* No need to free buckets_in_use, it is always allocated in one * malloc with buckets */ #ifdef HASH_DEBUG debug("Freeing Hash: %p", h); #endif if (h->freeh) free(h); } void stat_Hash(Hash* h) { uint used_buckets = 0; uint max_collision = 0; uint max_usage = 0; uint usage[200]; uint i; uint collision; HashNode* node; for (i=0;i<200;i++) usage[i] = 0; for (i=0;inum_buckets;i++) { collision = 0; if (h->buckets_in_use[i]) { used_buckets++; node = &h->buckets[i]; while (node != NULL) { collision++; node = node->next; } if (collision > max_collision) max_collision = collision; } if (collision > 199) collision = 199; usage[collision]++; if (collision >0 && usage[collision] >= max_usage) max_usage = usage[collision]; } printf("---\nHash size: %d\nNodes used: %d\nNon empty buckets: %d\nMax collision: %d\n", h->num_buckets, h->size, used_buckets, max_collision); printf("{ "); for (i=0;i<=max_collision;i++) if (usage[i]) { printf("%d:%d ", i, usage[i]); /* if (i>0){ uint j; for (j=0;j<(usage[i] * 160 / 800);j++) printf("#"); } printf("\n"); */ } printf ("}\n"); } void clear_Hash(Hash* h, bool free_values) { uint i; HashNode* node; #ifdef HASH_STATS if (h->size > 2000) stat_Hash(h); #endif /* Iterate all buckets */ for (i=0;inum_buckets;i++) { if (h->buckets_in_use[i]) { h->buckets_in_use[i] = false; /* Free the first value */ if (free_values) free(h->buckets[i].value); node = h->buckets[i].next; while (node != NULL) { HashNode* prev = node; node = node->next; if (free_values) free(prev->value); free(prev); } } } h->size = 0; } /* Finds the node that that saves this key pair. If it is not * found, returns NULL. If it is found, *prev is set to the * node before the one found, or if the node found was the first in the bucket * to NULL. If it is not found, *prev is set to the last HashNode in the * bucket, or NULL if it is empty. prev can also be NULL, in which case it is * not used for output. */ static HashNode* Hash_FindNode(Hash* h, uint key1, uint key2, HashNode** prev_out) { uint hash = h->hash(key1, key2); HashNode* result = NULL; #ifdef HASH_DEBUG debug("Looking for %u, %u", key1, key2); #endif /* Check if the bucket is empty */ if (!h->buckets_in_use[hash]) { if (prev_out) *prev_out = NULL; result = NULL; /* Check the first node specially */ } else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) { /* Save the value */ result = h->buckets + hash; if (prev_out) *prev_out = NULL; #ifdef HASH_DEBUG debug("Found in first node: %p", result); #endif /* Check all other nodes */ } else { HashNode* prev = h->buckets + hash; HashNode* node = prev->next; while (node != NULL) { if (node->key1 == key1 && node->key2 == key2) { /* Found it */ result = node; #ifdef HASH_DEBUG debug("Found in other node: %p", result); #endif break; } prev = node; node = node->next; } if (prev_out) *prev_out = prev; } #ifdef HASH_DEBUG if (result == NULL) debug("Not found"); #endif return result; } void* Hash_Delete(Hash* h, uint key1, uint key2) { void* result; HashNode* prev; /* Used as output var for below function call */ HashNode* node = Hash_FindNode(h, key1, key2, &prev); if (node == NULL) { /* not found */ result = NULL; } else if (prev == NULL) { /* It is in the first node, we can't free that one, so we free * the next one instead (if there is any)*/ /* Save the value */ result = node->value; if (node->next != NULL) { HashNode* next = node->next; /* Copy the second to the first */ *node = *next; /* Free the second */ #ifndef NOFREE free(next); #endif } else { /* This was the last in this bucket */ /* Mark it as empty */ uint hash = h->hash(key1, key2); h->buckets_in_use[hash] = false; } } else { /* It is in another node */ /* Save the value */ result = node->value; /* Link previous and next nodes */ prev->next = node->next; /* Free the node */ #ifndef NOFREE free(node); #endif } if (result != NULL) h->size--; return result; } void* Hash_Set(Hash* h, uint key1, uint key2, void* value) { HashNode* prev; HashNode* node = Hash_FindNode(h, key1, key2, &prev); void* result = NULL; if (node != NULL) { /* Found it */ result = node->value; node->value = value; return result; } /* It is not yet present, let's add it */ if (prev == NULL) { /* The bucket is still empty */ uint hash = h->hash(key1, key2); h->buckets_in_use[hash] = true; node = h->buckets + hash; } else { /* Add it after prev */ node = malloc(sizeof(HashNode)); prev->next = node; } node->next = NULL; node->key1 = key1; node->key2 = key2; node->value = value; h->size++; return NULL; } void* Hash_Get(Hash* h, uint key1, uint key2) { HashNode* node = Hash_FindNode(h, key1, key2, NULL); #ifdef HASH_DEBUG debug("Found node: %p", node); #endif if (node == NULL) { /* Node not found */ return NULL; } else { return node->value; } } uint Hash_Size(Hash* h) { return h->size; }