/* $Id$ */ #ifndef MACROS_H #define MACROS_H #include "map.h" /// Fetch n bits starting at bit s from x #define GB(x, s, n) (((x) >> (s)) & ((1U << (n)) - 1)) /// Set n bits starting at bit s in x to d #define SB(x, s, n, d) ((x) = ((x) & ~(((1U << (n)) - 1) << (s))) | ((d) << (s))) /// Add i to the n bits starting at bit s in x #define AB(x, s, n, i) ((x) = ((x) & ~(((1U << (n)) - 1) << (s))) | (((x) + ((i) << (s))) & (((1U << (n)) - 1) << (s)))) #ifdef min #undef min #endif #ifdef max #undef max #endif static inline int min(int a, int b) { if (a <= b) return a; return b; } static inline int max(int a, int b) { if (a >= b) return a; return b; } static inline int64 max64(int64 a, int64 b) { if (a >= b) return a; return b; } static inline uint minu(uint a, uint b) { if (a <= b) return a; return b; } static inline uint maxu(uint a, uint b) { if (a >= b) return a; return b; } static inline int clamp(int a, int min, int max) { if (a <= min) return min; if (a >= max) return max; return a; } static inline uint clampu(uint a, uint min, uint max) { if (a <= min) return min; if (a >= max) return max; return a; } static inline int32 BIGMULSS(int32 a, int32 b, int shift) { return (int32)(((int64)(a) * (int64)(b)) >> (shift)); } static inline int64 BIGMULSS64(int64 a, int64 b, int shift) { return ((a) * (b)) >> (shift); } static inline uint32 BIGMULUS(uint32 a, uint32 b, int shift) { return (uint32)(((uint64)(a) * (uint64)(b)) >> (shift)); } static inline int64 BIGMULS(int32 a, int32 b) { return (int32)(((int64)(a) * (int64)(b))); } /* OPT: optimized into an unsigned comparison */ //#define IS_INSIDE_1D(x, base, size) ((x) >= (base) && (x) < (base) + (size)) #define IS_INSIDE_1D(x, base, size) ( (uint)((x) - (base)) < ((uint)(size)) ) #define HASBIT(x,y) (((x) & (1 << (y))) != 0) #define SETBIT(x,y) ((x) |= (1 << (y))) #define CLRBIT(x,y) ((x) &= ~(1 << (y))) #define TOGGLEBIT(x,y) ((x) ^= (1 << (y))) // checking more bits. Maybe unneccessary, but easy to use #define HASBITS(x,y) ((x) & (y)) #define SETBITS(x,y) ((x) |= (y)) #define CLRBITS(x,y) ((x) &= ~(y)) #define GENERAL_SPRITE_COLOR(color) ( (color + PALETTE_RECOLOR_START) << PALETTE_SPRITE_START) #define PLAYER_SPRITE_COLOR(owner) ( GENERAL_SPRITE_COLOR(_player_colors[owner])) #define SPRITE_PALETTE(x) ((x) | PALETTE_MODIFIER_COLOR) extern const byte _ffb_64[128]; /* Returns the position of the first bit that is not zero, counted from the * left. Ie, 10110100 returns 2, 00000001 returns 0, etc. When x == 0 returns * 0. */ #define FIND_FIRST_BIT(x) _ffb_64[(x)] /* Returns x with the first bit that is not zero, counted from the left, set * to zero. So, 10110100 returns 10110000, 00000001 returns 00000000, etc. */ #define KILL_FIRST_BIT(x) _ffb_64[(x)+64] static inline int FindFirstBit2x64(int value) { /* int i = 0; if ( (byte) value == 0) { i += 8; value >>= 8; } return i + FIND_FIRST_BIT(value & 0x3F); Faster ( or at least cleaner ) implementation below? */ if (GB(value, 0, 8) == 0) { return FIND_FIRST_BIT(GB(value, 8, 6)) + 8; } else { return FIND_FIRST_BIT(GB(value, 0, 6)); } } static inline int KillFirstBit2x64(int value) { if (GB(value, 0, 8) == 0) { return KILL_FIRST_BIT(GB(value, 8, 6)) << 8; } else { return value & (KILL_FIRST_BIT(GB(value, 0, 6)) | 0x3F00); } } /* [min,max), strictly less than */ #define IS_BYTE_INSIDE(a,min,max) ((byte)((a)-(min)) < (byte)((max)-(min))) #define IS_INT_INSIDE(a,min,max) ((uint)((a)-(min)) < (uint)((max)-(min))) #define CHANCE16(a,b) ((uint16)Random() <= (uint16)((65536 * a) / b)) #define CHANCE16R(a,b,r) ((uint16)(r=Random()) <= (uint16)((65536 * a) / b)) #define CHANCE16I(a,b,v) ((uint16)(v) <= (uint16)((65536 * a) / b)) #define for_each_bit(_i, _b) \ for (_i = 0; _b != 0; _i++, _b >>= 1) \ if (_b & 1) #define abs myabs static inline int intxchg_(int *a, int b) { int t = *a; *a = b; return t; } #define intswap(a,b) ((b) = intxchg_(&(a), (b))) static inline int uintxchg_(uint *a, uint b) { uint t = *a; *a = b; return t; } #define uintswap(a,b) ((b) = uintxchg_(&(a), (b))) static inline int myabs(int a) { if (a<0) a = -a; return a; } static inline int64 myabs64(int64 a) { if (a<0) a = -a; return a; } static inline void swap_byte(byte *a, byte *b) { byte t = *a; *a = *b; *b = t; } static inline void swap_uint16(uint16 *a, uint16 *b) { uint16 t = *a; *a = *b; *b = t; } static inline void swap_int16(int16 *a, int16 *b) { int16 t = *a; *a = *b; *b = t; } static inline void swap_int32(int32 *a, int32 *b) { int32 t = *a; *a = *b; *b = t; } static inline void swap_tile(TileIndex *a, TileIndex *b) { TileIndex t = *a; *a = *b; *b = t; } static inline uint16 ReadLE16Aligned(const void* x) { return FROM_LE16(*(const uint16*)x); } static inline uint16 ReadLE16Unaligned(const void* x) { #ifdef OTTD_ALIGNMENT return ((const byte*)x)[0] | ((const byte*)x)[1] << 8; #else return FROM_LE16(*(const uint16*)x); #endif } /** * ROtate x Left/Right by n (must be >= 0) * @note Assumes a byte has 8 bits */ #define ROL(x, n) ((x) << (n) | (x) >> (sizeof(x) * 8 - (n))) #define ROR(x, n) ((x) >> (n) | (x) << (sizeof(x) * 8 - (n))) /** * Return the smallest multiple of n equal or greater than x * @note n must be a power of 2 */ #define ALIGN(x, n) (((x) + (n) - 1) & ~((n) - 1)) #endif /* MACROS_H */