/* $Id$ */ /** @file helpers.hpp */ #ifndef HELPERS_HPP #define HELPERS_HPP #include "macros.h" /** When allocating using malloc/calloc in C++ it is usually needed to cast the return value * from void* to the proper pointer type. Another alternative would be MallocT<> as follows */ template FORCEINLINE T* MallocT(size_t num_elements) { T *t_ptr = (T*)malloc(num_elements * sizeof(T)); return t_ptr; } /** When allocating using malloc/calloc in C++ it is usually needed to cast the return value * from void* to the proper pointer type. Another alternative would be MallocT<> as follows */ template FORCEINLINE T* CallocT(size_t num_elements) { T *t_ptr = (T*)calloc(num_elements, sizeof(T)); return t_ptr; } /** When allocating using malloc/calloc in C++ it is usually needed to cast the return value * from void* to the proper pointer type. Another alternative would be MallocT<> as follows */ template FORCEINLINE T* ReallocT(T* t_ptr, size_t num_elements) { t_ptr = (T*)realloc(t_ptr, num_elements * sizeof(T)); return t_ptr; } /** type safe swap operation */ template void Swap(T& a, T& b) { T t = a; a = b; b = t; } /** returns the absolute value of (scalar) variable. @note assumes variable to be signed */ template static inline T myabs(T a) { return a < (T)0 ? -a : a; } /** returns the (absolute) difference between two (scalar) variables */ template static inline T delta(T a, T b) { return a < b ? b - a : a - b; } /** Some enums need to have allowed incrementing (i.e. StationClassID) */ #define DECLARE_POSTFIX_INCREMENT(type) \ FORCEINLINE type operator ++(type& e, int) \ { \ type e_org = e; \ e = (type)((int)e + 1); \ return e_org; \ } \ FORCEINLINE type operator --(type& e, int) \ { \ type e_org = e; \ e = (type)((int)e - 1); \ return e_org; \ } /** Operators to allow to work with enum as with type safe bit set in C++ */ # define DECLARE_ENUM_AS_BIT_SET(mask_t) \ FORCEINLINE mask_t operator | (mask_t m1, mask_t m2) {return (mask_t)((int)m1 | m2);} \ FORCEINLINE mask_t operator & (mask_t m1, mask_t m2) {return (mask_t)((int)m1 & m2);} \ FORCEINLINE mask_t operator ^ (mask_t m1, mask_t m2) {return (mask_t)((int)m1 ^ m2);} \ FORCEINLINE mask_t& operator |= (mask_t& m1, mask_t m2) {m1 = m1 | m2; return m1;} \ FORCEINLINE mask_t& operator &= (mask_t& m1, mask_t m2) {m1 = m1 & m2; return m1;} \ FORCEINLINE mask_t& operator ^= (mask_t& m1, mask_t m2) {m1 = m1 ^ m2; return m1;} \ FORCEINLINE mask_t operator ~(mask_t m) {return (mask_t)(~(int)m);} /** Informative template class exposing basic enumeration properties used by several * other templates below. Here we have only forward declaration. For each enum type * we will create specialization derived from MakeEnumPropsT<>. * i.e.: * template <> struct EnumPropsT : MakeEnumPropsT {}; * followed by: * typedef TinyEnumT TrackByte; */ template struct EnumPropsT; /** Helper template class that makes basic properties of given enumeration type visible * from outsize. It is used as base class of several EnumPropsT specializations each * dedicated to one of commonly used enumeration types. * @param Tenum_t enumeration type that you want to describe * @param Tstorage_t what storage type would be sufficient (i.e. byte) * @param Tbegin first valid value from the contiguous range (i.e. TRACK_BEGIN) * @param Tend one past the last valid value from the contiguous range (i.e. TRACK_END) * @param Tinvalid value used as invalid value marker (i.e. INVALID_TRACK) */ template struct MakeEnumPropsT { typedef Tenum_t type; ///< enum type (i.e. Trackdir) typedef Tstorage_t storage; ///< storage type (i.e. byte) static const Tenum_t begin = Tbegin; ///< lowest valid value (i.e. TRACKDIR_BEGIN) static const Tenum_t end = Tend; ///< one after the last valid value (i.e. TRACKDIR_END) static const Tenum_t invalid = Tinvalid; ///< what value is used as invalid value (i.e. INVALID_TRACKDIR) }; /** In some cases we use byte or uint16 to store values that are defined as enum. It is * necessary in order to control the sizeof() such values. Some compilers make enum * the same size as int (4 or 8 bytes instead of 1 or 2). As a consequence the strict * compiler type-checking causes errors like: * 'HasPowerOnRail' : cannot convert parameter 1 from 'byte' to 'RailType' when * u->u.rail.railtype is passed as argument or type RailType. In such cases it is better * to teach the compiler that u->u.rail.railtype is to be treated as RailType. */ template struct TinyEnumT; /** The general declaration of TinyEnumT<> (above) */ template struct TinyEnumT { typedef Tenum_t enum_type; ///< expose our enumeration type (i.e. Trackdir) to outside typedef EnumPropsT Props; ///< make easier access to our enumeration propeties typedef typename Props::storage storage_type; ///< small storage type static const enum_type begin = Props::begin; ///< enum beginning (i.e. TRACKDIR_BEGIN) static const enum_type end = Props::end; ///< enum end (i.e. TRACKDIR_END) static const enum_type invalid = Props::invalid;///< invalid value (i.e. INVALID_TRACKDIR) storage_type m_val; ///< here we hold the actual value in small (i.e. byte) form /** Cast operator - invoked then the value is assigned to the Tenum_t type */ FORCEINLINE operator enum_type () const { return (enum_type)m_val; } /** Assignment operator (from Tenum_t type) */ FORCEINLINE TinyEnumT& operator = (enum_type e) { m_val = (storage_type)e; return *this; } /** postfix ++ operator on tiny type */ FORCEINLINE TinyEnumT& operator ++ (int) { if (++m_val >= end) m_val -= (storage_type)(end - begin); return *this; } }; template void ClrBitT(T &t, int bit_index) { t = (T)(t & ~((T)1 << bit_index)); } template void SetBitT(T &t, int bit_index) { t = (T)(t | ((T)1 << bit_index)); } template void ToggleBitT(T &t, int bit_index) { t = (T)(t ^ ((T)1 << bit_index)); } /** * Overflow safe template for integers, i.e. integers that will never overflow * you multiply the maximum value with 2, or add 2, or substract somethng from * the minimum value, etc. * @param T the type these integers are stored with. * @param T_MAX the maximum value for the integers. * @param T_MIN the minimum value for the integers. */ template class OverflowSafeInt { private: /** The non-overflow safe backend to store the value in. */ T m_value; public: OverflowSafeInt() : m_value(0) { } OverflowSafeInt(const OverflowSafeInt& other) { this->m_value = other.m_value; } OverflowSafeInt(const int64 int_) { this->m_value = int_; } FORCEINLINE OverflowSafeInt& operator = (const OverflowSafeInt& other) { this->m_value = other.m_value; return *this; } FORCEINLINE OverflowSafeInt operator - () const { return OverflowSafeInt(-this->m_value); } /** * Safe implementation of addition. * @param other the amount to add * @note when the addition would yield more than T_MAX (or less than T_MIN), * it will be T_MAX (respectively T_MIN). */ FORCEINLINE OverflowSafeInt& operator += (const OverflowSafeInt& other) { if ((T_MAX - myabs(other.m_value)) < myabs(this->m_value) && (this->m_value < 0) == (other.m_value < 0)) { this->m_value = (this->m_value < 0) ? T_MIN : T_MAX ; } else { this->m_value += other.m_value; } return *this; } /* Operators for addition and substraction */ FORCEINLINE OverflowSafeInt operator + (const OverflowSafeInt& other) const { OverflowSafeInt result = *this; result += other; return result; } FORCEINLINE OverflowSafeInt operator + (const int other) const { OverflowSafeInt result = *this; result += (int64)other; return result; } FORCEINLINE OverflowSafeInt operator + (const uint other) const { OverflowSafeInt result = *this; result += (int64)other; return result; } FORCEINLINE OverflowSafeInt& operator -= (const OverflowSafeInt& other) { return *this += (-other); } FORCEINLINE OverflowSafeInt operator - (const OverflowSafeInt& other) const { OverflowSafeInt result = *this; result -= other; return result; } FORCEINLINE OverflowSafeInt operator - (const int other) const { OverflowSafeInt result = *this; result -= (int64)other; return result; } FORCEINLINE OverflowSafeInt operator - (const uint other) const { OverflowSafeInt result = *this; result -= (int64)other; return result; } FORCEINLINE OverflowSafeInt& operator ++ (int) { return *this += 1; } FORCEINLINE OverflowSafeInt& operator -- (int) { return *this += -1; } /** * Safe implementation of multiplication. * @param factor the factor to multiply this with. * @note when the multiplication would yield more than T_MAX (or less than T_MIN), * it will be T_MAX (respectively T_MIN). */ FORCEINLINE OverflowSafeInt& operator *= (const int factor) { if (factor != 0 && (T_MAX / myabs(factor)) < myabs(this->m_value)) { this->m_value = ((this->m_value < 0) == (factor < 0)) ? T_MAX : T_MIN ; } else { this->m_value *= factor ; } return *this; } /* Operators for multiplication */ FORCEINLINE OverflowSafeInt operator * (const int64 factor) const { OverflowSafeInt result = *this; result *= factor; return result; } FORCEINLINE OverflowSafeInt operator * (const int factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; } FORCEINLINE OverflowSafeInt operator * (const uint factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; } FORCEINLINE OverflowSafeInt operator * (const uint16 factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; } FORCEINLINE OverflowSafeInt operator * (const byte factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; } /* Operators for division */ FORCEINLINE OverflowSafeInt& operator /= (const int divisor) { this->m_value /= divisor; return *this; } FORCEINLINE OverflowSafeInt operator / (const OverflowSafeInt& divisor) const { OverflowSafeInt result = *this; result /= divisor.m_value; return result; } FORCEINLINE OverflowSafeInt operator / (const int divisor) const { OverflowSafeInt result = *this; result /= divisor; return result; } FORCEINLINE OverflowSafeInt operator / (const uint divisor) const { OverflowSafeInt result = *this; result /= (int)divisor; return result; } /* Operators for modulo */ FORCEINLINE OverflowSafeInt& operator %= (const int divisor) { this->m_value %= divisor; return *this; } FORCEINLINE OverflowSafeInt operator % (const int divisor) const { OverflowSafeInt result = *this; result %= divisor; return result; } /* Operators for shifting */ FORCEINLINE OverflowSafeInt& operator <<= (const int shift) { this->m_value <<= shift; return *this; } FORCEINLINE OverflowSafeInt operator << (const int shift) const { OverflowSafeInt result = *this; result <<= shift; return result; } FORCEINLINE OverflowSafeInt& operator >>= (const int shift) { this->m_value >>= shift; return *this; } FORCEINLINE OverflowSafeInt operator >> (const int shift) const { OverflowSafeInt result = *this; result >>= shift; return result; } /* Operators for (in)equality when comparing overflow safe ints */ FORCEINLINE bool operator == (const OverflowSafeInt& other) const { return this->m_value == other.m_value; } FORCEINLINE bool operator != (const OverflowSafeInt& other) const { return !(*this == other); } FORCEINLINE bool operator > (const OverflowSafeInt& other) const { return this->m_value > other.m_value; } FORCEINLINE bool operator >= (const OverflowSafeInt& other) const { return this->m_value >= other.m_value; } FORCEINLINE bool operator < (const OverflowSafeInt& other) const { return !(*this >= other); } FORCEINLINE bool operator <= (const OverflowSafeInt& other) const { return !(*this > other); } /* Operators for (in)equality when comparing non-overflow safe ints */ FORCEINLINE bool operator == (const int other) const { return this->m_value == other; } FORCEINLINE bool operator != (const int other) const { return !(*this == other); } FORCEINLINE bool operator > (const int other) const { return this->m_value > other; } FORCEINLINE bool operator >= (const int other) const { return this->m_value >= other; } FORCEINLINE bool operator < (const int other) const { return !(*this >= other); } FORCEINLINE bool operator <= (const int other) const { return !(*this > other); } FORCEINLINE operator int64 () const { return this->m_value; } }; /* Sometimes we got int64 operator OverflowSafeInt instead of vice versa. Handle that properly */ template FORCEINLINE OverflowSafeInt operator + (int64 a, OverflowSafeInt b) { return b + a; } template FORCEINLINE OverflowSafeInt operator - (int64 a, OverflowSafeInt b) { return -b + a; } template FORCEINLINE OverflowSafeInt operator * (int64 a, OverflowSafeInt b) { return b * a; } template FORCEINLINE OverflowSafeInt operator / (int64 a, OverflowSafeInt b) { return (OverflowSafeInt)a / (int)b; } /* Sometimes we got int operator OverflowSafeInt instead of vice versa. Handle that properly */ template FORCEINLINE OverflowSafeInt operator + (int a, OverflowSafeInt b) { return b + a; } template FORCEINLINE OverflowSafeInt operator - (int a, OverflowSafeInt b) { return -b + a; } template FORCEINLINE OverflowSafeInt operator * (int a, OverflowSafeInt b) { return b * a; } template FORCEINLINE OverflowSafeInt operator / (int a, OverflowSafeInt b) { return (OverflowSafeInt)a / (int)b; } /* Sometimes we got uint operator OverflowSafeInt instead of vice versa. Handle that properly */ template FORCEINLINE OverflowSafeInt operator + (uint a, OverflowSafeInt b) { return b + a; } template FORCEINLINE OverflowSafeInt operator - (uint a, OverflowSafeInt b) { return -b + a; } template FORCEINLINE OverflowSafeInt operator * (uint a, OverflowSafeInt b) { return b * a; } template FORCEINLINE OverflowSafeInt operator / (uint a, OverflowSafeInt b) { return (OverflowSafeInt)a / (int)b; } /* Sometimes we got byte operator OverflowSafeInt instead of vice versa. Handle that properly */ template FORCEINLINE OverflowSafeInt operator + (byte a, OverflowSafeInt b) { return b + a; } template FORCEINLINE OverflowSafeInt operator - (byte a, OverflowSafeInt b) { return -b + a; } template FORCEINLINE OverflowSafeInt operator * (byte a, OverflowSafeInt b) { return b * a; } template FORCEINLINE OverflowSafeInt operator / (byte a, OverflowSafeInt b) { return (OverflowSafeInt)a / (int)b; } #endif /* HELPERS_HPP */