/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file 32bpp_optimized.cpp Implementation of the optimized 32 bpp blitter. */ #include "../stdafx.h" #include "../zoom_func.h" #include "../settings_type.h" #include "../palette_func.h" #include "32bpp_optimized.hpp" #include "../safeguards.h" /** Instantiation of the optimized 32bpp blitter factory. */ static FBlitter_32bppOptimized iFBlitter_32bppOptimized; /** * Draws a sprite to a (screen) buffer. It is templated to allow faster operation. * * @tparam mode blitter mode * @param bp further blitting parameters * @param zoom zoom level at which we are drawing */ template inline void Blitter_32bppOptimized::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom) { const SpriteData *src = (const SpriteData *)bp->sprite; /* src_px : each line begins with uint32_t n = 'number of bytes in this line', * then n times is the Colour struct for this line */ const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]); /* src_n : each line begins with uint32_t n = 'number of bytes in this line', * then interleaved stream of 'm' and 'n' channels. 'm' is remap, * 'n' is number of bytes with the same alpha channel class */ const uint16_t *src_n = (const uint16_t *)(src->data + src->offset[zoom][1]); /* skip upper lines in src_px and src_n */ for (uint i = bp->skip_top; i != 0; i--) { src_px = (const Colour *)((const uint8_t *)src_px + *(const uint32_t *)src_px); src_n = (const uint16_t *)((const uint8_t *)src_n + *(const uint32_t *)src_n); } /* skip lines in dst */ Colour *dst = (Colour *)bp->dst + bp->top * bp->pitch + bp->left; /* store so we don't have to access it via bp every time (compiler assumes pointer aliasing) */ const uint8_t *remap = bp->remap; for (int y = 0; y < bp->height; y++) { /* next dst line begins here */ Colour *dst_ln = dst + bp->pitch; /* next src line begins here */ const Colour *src_px_ln = (const Colour *)((const uint8_t *)src_px + *(const uint32_t *)src_px); src_px++; /* next src_n line begins here */ const uint16_t *src_n_ln = (const uint16_t *)((const uint8_t *)src_n + *(const uint32_t *)src_n); src_n += 2; /* we will end this line when we reach this point */ Colour *dst_end = dst + bp->skip_left; /* number of pixels with the same alpha channel class */ uint n; while (dst < dst_end) { n = *src_n++; if (src_px->a == 0) { dst += n; src_px ++; src_n++; } else { if (dst + n > dst_end) { uint d = dst_end - dst; src_px += d; src_n += d; dst = dst_end - bp->skip_left; dst_end = dst + bp->width; n = std::min(n - d, (uint)bp->width); goto draw; } dst += n; src_px += n; src_n += n; } } dst -= bp->skip_left; dst_end -= bp->skip_left; dst_end += bp->width; while (dst < dst_end) { n = std::min(*src_n++, dst_end - dst); if (src_px->a == 0) { dst += n; src_px++; src_n++; continue; } draw:; switch (mode) { case BM_COLOUR_REMAP: if (src_px->a == 255) { do { uint m = *src_n; /* In case the m-channel is zero, do not remap this pixel in any way */ if (m == 0) { *dst = src_px->data; } else { uint r = remap[GB(m, 0, 8)]; if (r != 0) *dst = this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8)); } dst++; src_px++; src_n++; } while (--n != 0); } else { do { uint m = *src_n; if (m == 0) { *dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst); } else { uint r = remap[GB(m, 0, 8)]; if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8)), src_px->a, *dst); } dst++; src_px++; src_n++; } while (--n != 0); } break; case BM_CRASH_REMAP: if (src_px->a == 255) { do { uint m = *src_n; if (m == 0) { uint8_t g = MakeDark(src_px->r, src_px->g, src_px->b); *dst = ComposeColourRGBA(g, g, g, src_px->a, *dst); } else { uint r = remap[GB(m, 0, 8)]; if (r != 0) *dst = this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8)); } dst++; src_px++; src_n++; } while (--n != 0); } else { do { uint m = *src_n; if (m == 0) { if (src_px->a != 0) { uint8_t g = MakeDark(src_px->r, src_px->g, src_px->b); *dst = ComposeColourRGBA(g, g, g, src_px->a, *dst); } } else { uint r = remap[GB(m, 0, 8)]; if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8)), src_px->a, *dst); } dst++; src_px++; src_n++; } while (--n != 0); } break; case BM_BLACK_REMAP: do { *dst = Colour(0, 0, 0); dst++; src_px++; src_n++; } while (--n != 0); break; case BM_TRANSPARENT: /* Make the current colour a bit more black, so it looks like this image is transparent */ src_n += n; if (src_px->a == 255) { src_px += n; do { *dst = MakeTransparent(*dst, 3, 4); dst++; } while (--n != 0); } else { do { *dst = MakeTransparent(*dst, (256 * 4 - src_px->a), 256 * 4); dst++; src_px++; } while (--n != 0); } break; case BM_TRANSPARENT_REMAP: /* Apply custom transparency remap. */ src_n += n; if (src_px->a != 0) { src_px += n; do { *dst = this->LookupColourInPalette(remap[GetNearestColourIndex(*dst)]); dst++; } while (--n != 0); } else { dst += n; src_px += n; } break; default: if (src_px->a == 255) { /* faster than memcpy(), n is usually low */ do { if (Tpal_to_rgb && *src_n != 0) { /* Convert the mapping channel to a RGB value */ *dst = this->AdjustBrightness(this->LookupColourInPalette(GB(*src_n, 0, 8)), GB(*src_n, 8, 8)).data; } else { *dst = src_px->data; } dst++; src_px++; src_n++; } while (--n != 0); } else { do { if (Tpal_to_rgb && *src_n != 0) { /* Convert the mapping channel to a RGB value */ Colour colour = this->AdjustBrightness(this->LookupColourInPalette(GB(*src_n, 0, 8)), GB(*src_n, 8, 8)); *dst = ComposeColourRGBANoCheck(colour.r, colour.g, colour.b, src_px->a, *dst); } else { *dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst); } dst++; src_px++; src_n++; } while (--n != 0); } break; } } dst = dst_ln; src_px = src_px_ln; src_n = src_n_ln; } } template void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom) { switch (mode) { default: NOT_REACHED(); case BM_NORMAL: Draw(bp, zoom); return; case BM_COLOUR_REMAP: Draw(bp, zoom); return; case BM_TRANSPARENT: Draw(bp, zoom); return; case BM_TRANSPARENT_REMAP: Draw(bp, zoom); return; case BM_CRASH_REMAP: Draw(bp, zoom); return; case BM_BLACK_REMAP: Draw(bp, zoom); return; } } template void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom); template void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom); /** * Draws a sprite to a (screen) buffer. Calls adequate templated function. * * @param bp further blitting parameters * @param mode blitter mode * @param zoom zoom level at which we are drawing */ void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom) { this->Draw(bp, mode, zoom); } template Sprite *Blitter_32bppOptimized::EncodeInternal(const SpriteLoader::SpriteCollection &sprite, AllocatorProc *allocator) { /* streams of pixels (a, r, g, b channels) * * stored in separated stream so data are always aligned on 4B boundary */ Colour *dst_px_orig[ZOOM_LVL_END]; /* interleaved stream of 'm' channel and 'n' channel * 'n' is number of following pixels with the same alpha channel class * there are 3 classes: 0, 255, others * * it has to be stored in one stream so fewer registers are used - * x86 has problems with register allocation even with this solution */ uint16_t *dst_n_orig[ZOOM_LVL_END]; /* lengths of streams */ uint32_t lengths[ZOOM_LVL_END][2]; ZoomLevel zoom_min; ZoomLevel zoom_max; if (sprite[ZOOM_LVL_NORMAL].type == SpriteType::Font) { zoom_min = ZOOM_LVL_NORMAL; zoom_max = ZOOM_LVL_NORMAL; } else { zoom_min = _settings_client.gui.zoom_min; zoom_max = _settings_client.gui.zoom_max; if (zoom_max == zoom_min) zoom_max = ZOOM_LVL_MAX; } for (ZoomLevel z = zoom_min; z <= zoom_max; z++) { const SpriteLoader::Sprite *src_orig = &sprite[z]; uint size = src_orig->height * src_orig->width; dst_px_orig[z] = CallocT(size + src_orig->height * 2); dst_n_orig[z] = CallocT(size * 2 + src_orig->height * 4 * 2); uint32_t *dst_px_ln = (uint32_t *)dst_px_orig[z]; uint32_t *dst_n_ln = (uint32_t *)dst_n_orig[z]; const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *)src_orig->data; for (uint y = src_orig->height; y > 0; y--) { /* Index 0 of dst_px and dst_n is left as space to save the length of the row to be filled later. */ Colour *dst_px = (Colour *)&dst_px_ln[1]; uint16_t *dst_n = (uint16_t *)&dst_n_ln[1]; uint16_t *dst_len = dst_n++; uint last = 3; int len = 0; for (uint x = src_orig->width; x > 0; x--) { uint8_t a = src->a; uint t = a > 0 && a < 255 ? 1 : a; if (last != t || len == 65535) { if (last != 3) { *dst_len = len; dst_len = dst_n++; } len = 0; } last = t; len++; if (a != 0) { dst_px->a = a; *dst_n = src->m; if (src->m != 0) { /* Get brightest value */ uint8_t rgb_max = std::max({ src->r, src->g, src->b }); /* Black pixel (8bpp or old 32bpp image), so use default value */ if (rgb_max == 0) rgb_max = DEFAULT_BRIGHTNESS; *dst_n |= rgb_max << 8; if (Tpal_to_rgb) { /* Pre-convert the mapping channel to a RGB value */ Colour colour = this->AdjustBrightness(this->LookupColourInPalette(src->m), rgb_max); dst_px->r = colour.r; dst_px->g = colour.g; dst_px->b = colour.b; } else { dst_px->r = src->r; dst_px->g = src->g; dst_px->b = src->b; } } else { dst_px->r = src->r; dst_px->g = src->g; dst_px->b = src->b; } dst_px++; dst_n++; } else if (len == 1) { dst_px++; *dst_n = src->m; dst_n++; } src++; } if (last != 3) { *dst_len = len; } dst_px = (Colour *)AlignPtr(dst_px, 4); dst_n = (uint16_t *)AlignPtr(dst_n, 4); *dst_px_ln = (uint8_t *)dst_px - (uint8_t *)dst_px_ln; *dst_n_ln = (uint8_t *)dst_n - (uint8_t *)dst_n_ln; dst_px_ln = (uint32_t *)dst_px; dst_n_ln = (uint32_t *)dst_n; } lengths[z][0] = (uint8_t *)dst_px_ln - (uint8_t *)dst_px_orig[z]; // all are aligned to 4B boundary lengths[z][1] = (uint8_t *)dst_n_ln - (uint8_t *)dst_n_orig[z]; } uint len = 0; // total length of data for (ZoomLevel z = zoom_min; z <= zoom_max; z++) { len += lengths[z][0] + lengths[z][1]; } Sprite *dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sizeof(SpriteData) + len); dest_sprite->height = sprite[ZOOM_LVL_NORMAL].height; dest_sprite->width = sprite[ZOOM_LVL_NORMAL].width; dest_sprite->x_offs = sprite[ZOOM_LVL_NORMAL].x_offs; dest_sprite->y_offs = sprite[ZOOM_LVL_NORMAL].y_offs; SpriteData *dst = (SpriteData *)dest_sprite->data; memset(dst, 0, sizeof(*dst)); for (ZoomLevel z = zoom_min; z <= zoom_max; z++) { dst->offset[z][0] = z == zoom_min ? 0 : lengths[z - 1][1] + dst->offset[z - 1][1]; dst->offset[z][1] = lengths[z][0] + dst->offset[z][0]; memcpy(dst->data + dst->offset[z][0], dst_px_orig[z], lengths[z][0]); memcpy(dst->data + dst->offset[z][1], dst_n_orig[z], lengths[z][1]); free(dst_px_orig[z]); free(dst_n_orig[z]); } return dest_sprite; } template Sprite *Blitter_32bppOptimized::EncodeInternal(const SpriteLoader::SpriteCollection &sprite, AllocatorProc *allocator); template Sprite *Blitter_32bppOptimized::EncodeInternal(const SpriteLoader::SpriteCollection &sprite, AllocatorProc *allocator); Sprite *Blitter_32bppOptimized::Encode(const SpriteLoader::SpriteCollection &sprite, AllocatorProc *allocator) { return this->EncodeInternal(sprite, allocator); }