OpenTTD/src/core/smallstack_type.hpp

288 lines
8.7 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file smallstack_type.hpp Minimal stack that uses a pool to avoid pointers and doesn't allocate any heap memory if there is only one valid item. */
#ifndef SMALLSTACK_TYPE_HPP
#define SMALLSTACK_TYPE_HPP
#include <mutex>
/**
* A simplified pool which stores values instead of pointers and doesn't
* redefine operator new/delete. It also never zeroes memory and always reuses
* it.
*/
template<typename Titem, typename Tindex, Tindex Tgrowth_step, Tindex Tmax_size>
class SimplePool {
public:
inline SimplePool() : first_unused(0), first_free(0) {}
/**
* Get the mutex. We don't lock the mutex in the pool methods as the
* SmallStack isn't necessarily in a consistent state after each method.
* @return Mutex.
*/
inline std::mutex &GetMutex() { return this->mutex; }
/**
* Get the item at position index.
* @return Item at index.
*/
inline Titem &Get(Tindex index) { return this->data[index]; }
/**
* Create a new item and return its index.
* @return Index of new item.
*/
inline Tindex Create()
{
Tindex index = this->FindFirstFree();
if (index < Tmax_size) {
this->data[index].valid = true;
this->first_free = index + 1;
this->first_unused = std::max(this->first_unused, this->first_free);
}
return index;
}
/**
* Destroy (or rather invalidate) the item at the given index.
* @param index Index of item to be destroyed.
*/
inline void Destroy(Tindex index)
{
this->data[index].valid = false;
this->first_free = std::min(this->first_free, index);
}
private:
inline Tindex FindFirstFree()
{
Tindex index = this->first_free;
for (; index < this->first_unused; index++) {
if (!this->data[index].valid) return index;
}
if (index >= this->data.size() && index < Tmax_size) {
this->data.resize(index + 1);
}
return index;
}
struct SimplePoolPoolItem : public Titem {
bool valid;
};
Tindex first_unused;
Tindex first_free;
std::mutex mutex;
std::vector<SimplePoolPoolItem> data;
};
/**
* Base class for SmallStack. We cannot add this into SmallStack itself as
* certain compilers don't like it.
*/
template <typename Titem, typename Tindex>
struct SmallStackItem {
Tindex next; ///< Pool index of next item.
Titem value; ///< Value of current item.
/**
* Create a new item.
* @param value Value of the item.
* @param next Next item in the stack.
*/
inline SmallStackItem(const Titem &value, Tindex next) :
next(next), value(value) {}
SmallStackItem() = default;
};
/**
* Minimal stack that uses a pool to avoid pointers. It has some peculiar
* properties that make it useful for passing around lists of IDs but not much
* else:
* 1. It always includes an invalid item as bottom.
* 2. It doesn't have a deep copy operation but uses smart pointers instead.
* Every copy is thus implicitly shared.
* 3. Its items are immutable.
* 4. Due to 2. and 3. memory management can be done by "branch counting".
* Whenever you copy a smallstack, the first item on the heap increases its
* branch_count, signifying that there are multiple items "in front" of it.
* When deleting a stack items are deleted up to the point where
* branch_count > 0.
* 5. You can choose your own index type, so that you can align it with your
* value type. E.G. value types of 16 bits length like to be combined with
* index types of the same length.
* 6. All accesses to the underlying pool are guarded by a mutex and atomic in
* the sense that the mutex stays locked until the pool has reacquired a
* consistent state. This means that even though a common data structure is
* used the SmallStack is still reentrant.
* @tparam Titem Value type to be used.
* @tparam Tindex Index type to use for the pool.
* @tparam Tinvalid Invalid item to keep at the bottom of each stack.
* @tparam Tgrowth_step Growth step for pool.
* @tparam Tmax_size Maximum size for pool.
*/
template <typename Titem, typename Tindex, Titem Tinvalid, Tindex Tgrowth_step, Tindex Tmax_size>
class SmallStack : public SmallStackItem<Titem, Tindex> {
public:
typedef SmallStackItem<Titem, Tindex> Item;
/**
* SmallStack item that can be kept in a pool.
*/
struct PooledSmallStack : public Item {
Tindex branch_count; ///< Number of branches in the tree structure this item is parent of
};
typedef SimplePool<PooledSmallStack, Tindex, Tgrowth_step, Tmax_size> SmallStackPool;
/**
* Constructor for a stack with one or two items in it.
* @param value Initial item. If not missing or Tinvalid there will be Tinvalid below it.
*/
inline SmallStack(const Titem &value = Tinvalid) : Item(value, Tmax_size) {}
/**
* Remove the head of stack and all other items members that are unique to it.
*/
inline ~SmallStack()
{
/* Pop() locks the mutex and after each pop the pool is consistent.*/
while (this->next != Tmax_size) this->Pop();
}
/**
* Shallow copy the stack, marking the first item as branched.
* @param other Stack to copy from
*/
inline SmallStack(const SmallStack &other) : Item(other) { this->Branch(); }
/**
* Shallow copy the stack, marking the first item as branched.
* @param other Stack to copy from
* @return This smallstack.
*/
inline SmallStack &operator=(const SmallStack &other)
{
if (this == &other) return *this;
while (this->next != Tmax_size) this->Pop();
this->next = other.next;
this->value = other.value;
/* Deleting and branching are independent operations, so it's fine to
* acquire separate locks for them. */
this->Branch();
return *this;
}
/**
* Pushes a new item onto the stack if there is still space in the
* underlying pool. Otherwise the topmost item's value gets overwritten.
* @param item Item to be pushed.
*/
inline void Push(const Titem &item)
{
if (this->value != Tinvalid) {
std::lock_guard<std::mutex> lock(SmallStack::GetPool().GetMutex());
Tindex new_item = SmallStack::GetPool().Create();
if (new_item != Tmax_size) {
PooledSmallStack &pushed = SmallStack::GetPool().Get(new_item);
pushed.value = this->value;
pushed.next = this->next;
pushed.branch_count = 0;
this->next = new_item;
}
}
this->value = item;
}
/**
* Pop an item from the stack.
* @return Current top of stack.
*/
inline Titem Pop()
{
Titem ret = this->value;
if (this->next == Tmax_size) {
this->value = Tinvalid;
} else {
std::lock_guard<std::mutex> lock(SmallStack::GetPool().GetMutex());
PooledSmallStack &popped = SmallStack::GetPool().Get(this->next);
this->value = popped.value;
if (popped.branch_count == 0) {
SmallStack::GetPool().Destroy(this->next);
} else {
--popped.branch_count;
/* We can't use Branch() here as we already have the mutex.*/
if (popped.next != Tmax_size) {
++(SmallStack::GetPool().Get(popped.next).branch_count);
}
}
/* Accessing popped here is no problem as the pool will only set
* the validity flag, not actually delete the item, on Destroy().
* It's impossible for another thread to acquire the same item in
* the mean time because of the mutex. */
this->next = popped.next;
}
return ret;
}
/**
* Check if the stack is empty.
* @return If the stack is empty.
*/
inline bool IsEmpty() const
{
return this->value == Tinvalid && this->next == Tmax_size;
}
/**
* Check if the given item is contained in the stack.
* @param item Item to look for.
* @return If the item is in the stack.
*/
inline bool Contains(const Titem &item) const
{
if (item == Tinvalid || item == this->value) return true;
if (this->next != Tmax_size) {
std::lock_guard<std::mutex> lock(SmallStack::GetPool().GetMutex());
const SmallStack *in_list = this;
do {
in_list = static_cast<const SmallStack *>(
static_cast<const Item *>(&SmallStack::GetPool().Get(in_list->next)));
if (in_list->value == item) return true;
} while (in_list->next != Tmax_size);
}
return false;
}
protected:
static SmallStackPool &GetPool()
{
static SmallStackPool pool;
return pool;
}
/**
* Create a branch in the pool if necessary.
*/
inline void Branch()
{
if (this->next != Tmax_size) {
std::lock_guard<std::mutex> lock(SmallStack::GetPool().GetMutex());
++(SmallStack::GetPool().Get(this->next).branch_count);
}
}
};
#endif