OpenTTD/src/linkgraph/linkgraph.h

581 lines
17 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file linkgraph.h Declaration of link graph classes used for cargo distribution. */
#ifndef LINKGRAPH_H
#define LINKGRAPH_H
#include "../core/pool_type.hpp"
#include "../core/smallmap_type.hpp"
#include "../station_base.h"
#include "../cargotype.h"
#include "../date_func.h"
#include "../saveload/saveload.h"
#include "linkgraph_type.h"
#include <utility>
class LinkGraph;
/**
* Type of the pool for link graph components. Each station can be in at up to
* 32 link graphs. So we allow for plenty of them to be created.
*/
typedef Pool<LinkGraph, LinkGraphID, 32, 0xFFFF> LinkGraphPool;
/** The actual pool with link graphs. */
extern LinkGraphPool _link_graph_pool;
/**
* A connected component of a link graph. Contains a complete set of stations
* connected by links as nodes and edges. Each component also holds a copy of
* the link graph settings at the time of its creation. The global settings
* might change between the creation and join time so we can't rely on them.
*/
class LinkGraph : public LinkGraphPool::PoolItem<&_link_graph_pool> {
public:
/**
* An edge in the link graph. Corresponds to a link between two stations.
*/
struct BaseEdge {
uint capacity; ///< Capacity of the link.
uint usage; ///< Usage of the link.
uint64 travel_time_sum; ///< Sum of the travel times of the link, in ticks.
Date last_unrestricted_update; ///< When the unrestricted part of the link was last updated.
Date last_restricted_update; ///< When the restricted part of the link was last updated.
NodeID dest_node; ///< Destination of the edge.
BaseEdge(NodeID dest_node = INVALID_NODE);
/**
* Get edge's average travel time.
* @return Travel time, in ticks.
*/
uint32 TravelTime() const { return this->travel_time_sum / this->capacity; }
/** Comparison operator based on \c dest_node. */
bool operator <(const BaseEdge &rhs) const
{
return this->dest_node < rhs.dest_node;
}
bool operator <(NodeID rhs) const
{
return this->dest_node < rhs;
}
friend inline bool operator <(NodeID lhs, const LinkGraph::BaseEdge &rhs)
{
return lhs < rhs.dest_node;
}
};
/**
* Node of the link graph. contains all relevant information from the associated
* station. It's copied so that the link graph job can work on its own data set
* in a separate thread.
*/
struct BaseNode {
uint supply; ///< Supply at the station.
uint demand; ///< Acceptance at the station.
StationID station; ///< Station ID.
TileIndex xy; ///< Location of the station referred to by the node.
Date last_update; ///< When the supply was last updated.
std::vector<BaseEdge> edges; ///< Sorted list of outgoing edges from this node.
BaseNode(TileIndex xy = INVALID_TILE, StationID st = INVALID_STATION, uint demand = 0);
};
/**
* Wrapper for an edge (const or not) allowing retrieval, but no modification.
* @tparam Tedge Actual edge class, may be "const BaseEdge" or just "BaseEdge".
*/
template<typename Tedge>
class EdgeWrapper {
protected:
Tedge &edge; ///< Actual edge to be used.
public:
/**
* Wrap a an edge.
* @param edge Edge to be wrapped.
*/
EdgeWrapper (Tedge &edge) : edge(edge) {}
/**
* Get edge's capacity.
* @return Capacity.
*/
uint Capacity() const { return this->edge.capacity; }
/**
* Get edge's usage.
* @return Usage.
*/
uint Usage() const { return this->edge.usage; }
/**
* Get edge's average travel time.
* @return Travel time, in ticks.
*/
uint32 TravelTime() const { return this->edge.TravelTime(); }
/**
* Get the date of the last update to the edge's unrestricted capacity.
* @return Last update.
*/
Date LastUnrestrictedUpdate() const { return this->edge.last_unrestricted_update; }
/**
* Get the date of the last update to the edge's restricted capacity.
* @return Last update.
*/
Date LastRestrictedUpdate() const { return this->edge.last_restricted_update; }
/**
* Get the date of the last update to any part of the edge's capacity.
* @return Last update.
*/
Date LastUpdate() const { return std::max(this->edge.last_unrestricted_update, this->edge.last_restricted_update); }
};
/**
* Wrapper for a node (const or not) allowing retrieval, but no modification.
* @tparam Tnode Actual node class, may be "const BaseNode" or just "BaseNode".
*/
template<typename Tnode>
class NodeWrapper {
protected:
Tnode &node; ///< Node being wrapped.
NodeID index; ///< ID of wrapped node.
auto GetEdge(NodeID dest) const
{
return std::lower_bound(this->node.edges.begin(), this->node.edges.end(), dest);
}
public:
/**
* Wrap a node.
* @param node Node to be wrapped.
* @param index ID of node to be wrapped.
*/
NodeWrapper(Tnode &node, NodeID index) : node(node), index(index) {}
/**
* Get supply of wrapped node.
* @return Supply.
*/
uint Supply() const { return this->node.supply; }
/**
* Get demand of wrapped node.
* @return Demand.
*/
uint Demand() const { return this->node.demand; }
/**
* Get ID of station belonging to wrapped node.
* @return ID of node's station.
*/
StationID Station() const { return this->node.station; }
/**
* Get node's last update.
* @return Last update.
*/
Date LastUpdate() const { return this->node.last_update; }
/**
* Get the location of the station associated with the node.
* @return Location of the station.
*/
TileIndex XY() const { return this->node.xy; }
/**
* Check if an edge to a destination is present.
* @param dest Wanted edge destination.
* @return True if an edge is present.
*/
bool HasEdgeTo(NodeID dest) const
{
return std::binary_search(this->node.edges.begin(), this->node.edges.end(), dest);
}
};
/**
* Base class for iterating across outgoing edges of a node. Only the real
* edges (those with capacity) are iterated. The ones with only distance
* information are skipped.
* @tparam Tedge Actual edge class. May be "BaseEdge" or "const BaseEdge".
* @tparam Titer Actual iterator class.
*/
template <class Tedge, class Tedge_wrapper, class Titer>
class BaseEdgeIterator {
protected:
span<Tedge> base; ///< Array of edges being iterated.
size_t current; ///< Current offset in edges array.
/**
* A "fake" pointer to enable operator-> on temporaries. As the objects
* returned from operator* aren't references but real objects, we have
* to return something that implements operator->, but isn't a pointer
* from operator->. A fake pointer.
*/
class FakePointer : public std::pair<NodeID, Tedge_wrapper> {
public:
/**
* Construct a fake pointer from a pair of NodeID and edge.
* @param pair Pair to be "pointed" to (in fact shallow-copied).
*/
FakePointer(const std::pair<NodeID, Tedge_wrapper> &pair) : std::pair<NodeID, Tedge_wrapper>(pair) {}
/**
* Retrieve the pair by operator->.
* @return Pair being "pointed" to.
*/
std::pair<NodeID, Tedge_wrapper> *operator->() { return this; }
};
public:
/**
* Constructor.
* @param base Array of edges to be iterated.
* @param end Make the iterator the end sentinel?
*/
BaseEdgeIterator(span<Tedge> base, bool end) : base(base), current(end ? base.size() : 0) {}
/**
* Prefix-increment.
* @return This.
*/
Titer &operator++()
{
if (this->current < this->base.size()) this->current++;
return static_cast<Titer &>(*this);
}
/**
* Postfix-increment.
* @return Version of this before increment.
*/
Titer operator++(int)
{
Titer ret(static_cast<Titer &>(*this));
++(*this);
return ret;
}
/**
* Compare with some other edge iterator. The other one may be of a
* child class.
* @tparam Tother Class of other iterator.
* @param other Instance of other iterator.
* @return If the iterators have the same edge array and current node.
*/
template<class Tother>
bool operator==(const Tother &other)
{
return this->base.data() == other.base.data() && this->current == other.current;
}
/**
* Compare for inequality with some other edge iterator. The other one
* may be of a child class.
* @tparam Tother Class of other iterator.
* @param other Instance of other iterator.
* @return If either the edge arrays or the current nodes differ.
*/
template<class Tother>
bool operator!=(const Tother &other)
{
return this->base.data() != other.base.data() || this->current != other.current;
}
/**
* Dereference with operator*.
* @return Pair of current target NodeID and edge object.
*/
std::pair<NodeID, Tedge_wrapper> operator*() const
{
return std::pair<NodeID, Tedge_wrapper>(this->base[this->current].dest_node, Tedge_wrapper(this->base[this->current]));
}
/**
* Dereference with operator->.
* @return Fake pointer to Pair of current target NodeID and edge object.
*/
FakePointer operator->() const {
return FakePointer(this->operator*());
}
};
/**
* A constant edge class.
*/
typedef EdgeWrapper<const BaseEdge> ConstEdge;
/**
* An updatable edge class.
*/
class Edge : public EdgeWrapper<BaseEdge> {
public:
/**
* Constructor
* @param edge Edge to be wrapped.
*/
Edge(BaseEdge &edge) : EdgeWrapper<BaseEdge>(edge) {}
void Update(uint capacity, uint usage, uint32 time, EdgeUpdateMode mode);
void Restrict() { this->edge.last_unrestricted_update = INVALID_DATE; }
void Release() { this->edge.last_restricted_update = INVALID_DATE; }
};
/**
* An iterator for const edges. Cannot be typedef'ed because of
* template-reference to ConstEdgeIterator itself.
*/
class ConstEdgeIterator : public BaseEdgeIterator<const BaseEdge, ConstEdge, ConstEdgeIterator> {
public:
/**
* Constructor.
* @param edges Array of edges to be iterated over.
* @param end Make the iterator the end sentinel?
*/
ConstEdgeIterator(span<const BaseEdge> edges, bool end) :
BaseEdgeIterator<const BaseEdge, ConstEdge, ConstEdgeIterator>(edges, end) {}
};
/**
* An iterator for non-const edges. Cannot be typedef'ed because of
* template-reference to EdgeIterator itself.
*/
class EdgeIterator : public BaseEdgeIterator<BaseEdge, Edge, EdgeIterator> {
public:
/**
* Constructor.
* @param edges Array of edges to be iterated over.
* @param end Make the iterator the end sentinel?
*/
EdgeIterator(span<BaseEdge> edges, bool end) :
BaseEdgeIterator<BaseEdge, Edge, EdgeIterator>(edges, end) {}
};
/**
* Constant node class. Only retrieval operations are allowed on both the
* node itself and its edges.
*/
class ConstNode : public NodeWrapper<const BaseNode> {
public:
/**
* Constructor.
* @param lg LinkGraph to get the node from.
* @param node ID of the node.
*/
ConstNode(const LinkGraph *lg, NodeID node) : NodeWrapper<const BaseNode>(lg->nodes[node], node) {}
/**
* Get a ConstEdge. This is not a reference as the wrapper objects are
* not actually persistent.
* @param to ID of end node of edge.
* @return Constant edge wrapper.
*/
ConstEdge operator[](NodeID to) const
{
assert(this->HasEdgeTo(to));
return ConstEdge(*this->GetEdge(to));
}
/**
* Get an iterator pointing to the start of the edges array.
* @return Constant edge iterator.
*/
ConstEdgeIterator Begin() const { return ConstEdgeIterator(this->node.edges, false); }
/**
* Get an iterator pointing beyond the end of the edges array.
* @return Constant edge iterator.
*/
ConstEdgeIterator End() const { return ConstEdgeIterator(this->node.edges, true); }
};
/**
* Updatable node class. The node itself as well as its edges can be modified.
*/
class Node : public NodeWrapper<BaseNode> {
public:
/**
* Constructor.
* @param lg LinkGraph to get the node from.
* @param node ID of the node.
*/
Node(LinkGraph *lg, NodeID node) : NodeWrapper<BaseNode>(lg->nodes[node], node) {}
/**
* Get an Edge. This is not a reference as the wrapper objects are not
* actually persistent.
* @param to ID of end node of edge.
* @return Edge wrapper.
*/
Edge operator[](NodeID to)
{
assert(this->HasEdgeTo(to));
return Edge(*this->GetEdge(to));
}
/**
* Get an iterator pointing to the start of the edges array.
* @return Edge iterator.
*/
EdgeIterator Begin() { return EdgeIterator(this->node.edges, false); }
/**
* Get an iterator pointing beyond the end of the edges array.
* @return Constant edge iterator.
*/
EdgeIterator End() { return EdgeIterator(this->node.edges, true); }
/**
* Update the node's supply and set last_update to the current date.
* @param supply Supply to be added.
*/
void UpdateSupply(uint supply)
{
this->node.supply += supply;
this->node.last_update = _date;
}
/**
* Update the node's location on the map.
* @param xy New location.
*/
void UpdateLocation(TileIndex xy)
{
this->node.xy = xy;
}
/**
* Set the node's demand.
* @param demand New demand for the node.
*/
void SetDemand(uint demand)
{
this->node.demand = demand;
}
void AddEdge(NodeID to, uint capacity, uint usage, uint32 time, EdgeUpdateMode mode);
void UpdateEdge(NodeID to, uint capacity, uint usage, uint32 time, EdgeUpdateMode mode);
void RemoveEdge(NodeID to);
};
typedef std::vector<BaseNode> NodeVector;
/** Minimum effective distance for timeout calculation. */
static const uint MIN_TIMEOUT_DISTANCE = 32;
/** Number of days before deleting links served only by vehicles stopped in depot. */
static const uint STALE_LINK_DEPOT_TIMEOUT = 1024;
/** Minimum number of days between subsequent compressions of a LG. */
static const uint COMPRESSION_INTERVAL = 256;
/**
* Scale a value from a link graph of age orig_age for usage in one of age
* target_age. Make sure that the value stays > 0 if it was > 0 before.
* @param val Value to be scaled.
* @param target_age Age of the target link graph.
* @param orig_age Age of the original link graph.
* @return scaled value.
*/
inline static uint Scale(uint val, uint target_age, uint orig_age)
{
return val > 0 ? std::max(1U, val * target_age / orig_age) : 0;
}
/** Bare constructor, only for save/load. */
LinkGraph() : cargo(INVALID_CARGO), last_compression(0) {}
/**
* Real constructor.
* @param cargo Cargo the link graph is about.
*/
LinkGraph(CargoID cargo) : cargo(cargo), last_compression(_date) {}
void Init(uint size);
void ShiftDates(int interval);
void Compress();
void Merge(LinkGraph *other);
/* Splitting link graphs is intentionally not implemented.
* The overhead in determining connectedness would probably outweigh the
* benefit of having to deal with smaller graphs. In real world examples
* networks generally grow. Only rarely a network is permanently split.
* Reacting to temporary splits here would obviously create performance
* problems and detecting the temporary or permanent nature of splits isn't
* trivial. */
/**
* Get a node with the specified id.
* @param num ID of the node.
* @return the Requested node.
*/
inline Node operator[](NodeID num) { return Node(this, num); }
/**
* Get a const reference to a node with the specified id.
* @param num ID of the node.
* @return the Requested node.
*/
inline ConstNode operator[](NodeID num) const { return ConstNode(this, num); }
/**
* Get the current size of the component.
* @return Size.
*/
inline NodeID Size() const { return (NodeID)this->nodes.size(); }
/**
* Get date of last compression.
* @return Date of last compression.
*/
inline Date LastCompression() const { return this->last_compression; }
/**
* Get the cargo ID this component's link graph refers to.
* @return Cargo ID.
*/
inline CargoID Cargo() const { return this->cargo; }
/**
* Scale a value to its monthly equivalent, based on last compression.
* @param base Value to be scaled.
* @return Scaled value.
*/
inline uint Monthly(uint base) const
{
return base * 30 / (_date - this->last_compression + 1);
}
NodeID AddNode(const Station *st);
void RemoveNode(NodeID id);
protected:
friend class LinkGraph::ConstNode;
friend class LinkGraph::Node;
friend SaveLoadTable GetLinkGraphDesc();
friend SaveLoadTable GetLinkGraphJobDesc();
friend class SlLinkgraphNode;
friend class SlLinkgraphEdge;
friend class LinkGraphJob;
CargoID cargo; ///< Cargo of this component's link graph.
Date last_compression; ///< Last time the capacities and supplies were compressed.
NodeVector nodes; ///< Nodes in the component.
};
#endif /* LINKGRAPH_H */