OpenTTD/src/saveload/saveload.cpp

3443 lines
102 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file saveload.cpp
* All actions handling saving and loading goes on in this file. The general actions
* are as follows for saving a game (loading is analogous):
* <ol>
* <li>initialize the writer by creating a temporary memory-buffer for it
* <li>go through all to-be saved elements, each 'chunk' (#ChunkHandler) prefixed by a label
* <li>use their description array (#SaveLoad) to know what elements to save and in what version
* of the game it was active (used when loading)
* <li>write all data byte-by-byte to the temporary buffer so it is endian-safe
* <li>when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe)
* <li>repeat this until everything is done, and flush any remaining output to file
* </ol>
*/
#include "../stdafx.h"
#include "../debug.h"
#include "../station_base.h"
#include "../thread.h"
#include "../town.h"
#include "../network/network.h"
#include "../window_func.h"
#include "../strings_func.h"
#include "../core/endian_func.hpp"
#include "../vehicle_base.h"
#include "../company_func.h"
#include "../date_func.h"
#include "../autoreplace_base.h"
#include "../roadstop_base.h"
#include "../linkgraph/linkgraph.h"
#include "../linkgraph/linkgraphjob.h"
#include "../statusbar_gui.h"
#include "../fileio_func.h"
#include "../gamelog.h"
#include "../string_func.h"
#include "../fios.h"
#include "../error.h"
#include <atomic>
#include <deque>
#include <vector>
#include <string>
#ifdef __EMSCRIPTEN__
# include <emscripten.h>
#endif
#include "table/strings.h"
#include "saveload_internal.h"
#include "saveload_filter.h"
#include "../safeguards.h"
extern const SaveLoadVersion SAVEGAME_VERSION = (SaveLoadVersion)(SL_MAX_VERSION - 1); ///< Current savegame version of OpenTTD.
SavegameType _savegame_type; ///< type of savegame we are loading
FileToSaveLoad _file_to_saveload; ///< File to save or load in the openttd loop.
uint32 _ttdp_version; ///< version of TTDP savegame (if applicable)
SaveLoadVersion _sl_version; ///< the major savegame version identifier
byte _sl_minor_version; ///< the minor savegame version, DO NOT USE!
std::string _savegame_format; ///< how to compress savegames
bool _do_autosave; ///< are we doing an autosave at the moment?
/** What are we currently doing? */
enum SaveLoadAction {
SLA_LOAD, ///< loading
SLA_SAVE, ///< saving
SLA_PTRS, ///< fixing pointers
SLA_NULL, ///< null all pointers (on loading error)
SLA_LOAD_CHECK, ///< partial loading into #_load_check_data
};
enum NeedLength {
NL_NONE = 0, ///< not working in NeedLength mode
NL_WANTLENGTH = 1, ///< writing length and data
NL_CALCLENGTH = 2, ///< need to calculate the length
};
/** Save in chunks of 128 KiB. */
static const size_t MEMORY_CHUNK_SIZE = 128 * 1024;
/** A buffer for reading (and buffering) savegame data. */
struct ReadBuffer {
byte buf[MEMORY_CHUNK_SIZE]; ///< Buffer we're going to read from.
byte *bufp; ///< Location we're at reading the buffer.
byte *bufe; ///< End of the buffer we can read from.
LoadFilter *reader; ///< The filter used to actually read.
size_t read; ///< The amount of read bytes so far from the filter.
/**
* Initialise our variables.
* @param reader The filter to actually read data.
*/
ReadBuffer(LoadFilter *reader) : bufp(nullptr), bufe(nullptr), reader(reader), read(0)
{
}
inline byte ReadByte()
{
if (this->bufp == this->bufe) {
size_t len = this->reader->Read(this->buf, lengthof(this->buf));
if (len == 0) SlErrorCorrupt("Unexpected end of chunk");
this->read += len;
this->bufp = this->buf;
this->bufe = this->buf + len;
}
return *this->bufp++;
}
/**
* Get the size of the memory dump made so far.
* @return The size.
*/
size_t GetSize() const
{
return this->read - (this->bufe - this->bufp);
}
};
/** Container for dumping the savegame (quickly) to memory. */
struct MemoryDumper {
std::vector<byte *> blocks; ///< Buffer with blocks of allocated memory.
byte *buf; ///< Buffer we're going to write to.
byte *bufe; ///< End of the buffer we write to.
/** Initialise our variables. */
MemoryDumper() : buf(nullptr), bufe(nullptr)
{
}
~MemoryDumper()
{
for (auto p : this->blocks) {
free(p);
}
}
/**
* Write a single byte into the dumper.
* @param b The byte to write.
*/
inline void WriteByte(byte b)
{
/* Are we at the end of this chunk? */
if (this->buf == this->bufe) {
this->buf = CallocT<byte>(MEMORY_CHUNK_SIZE);
this->blocks.push_back(this->buf);
this->bufe = this->buf + MEMORY_CHUNK_SIZE;
}
*this->buf++ = b;
}
/**
* Flush this dumper into a writer.
* @param writer The filter we want to use.
*/
void Flush(SaveFilter *writer)
{
uint i = 0;
size_t t = this->GetSize();
while (t > 0) {
size_t to_write = std::min(MEMORY_CHUNK_SIZE, t);
writer->Write(this->blocks[i++], to_write);
t -= to_write;
}
writer->Finish();
}
/**
* Get the size of the memory dump made so far.
* @return The size.
*/
size_t GetSize() const
{
return this->blocks.size() * MEMORY_CHUNK_SIZE - (this->bufe - this->buf);
}
};
/** The saveload struct, containing reader-writer functions, buffer, version, etc. */
struct SaveLoadParams {
SaveLoadAction action; ///< are we doing a save or a load atm.
NeedLength need_length; ///< working in NeedLength (Autolength) mode?
byte block_mode; ///< ???
bool error; ///< did an error occur or not
size_t obj_len; ///< the length of the current object we are busy with
int array_index, last_array_index; ///< in the case of an array, the current and last positions
bool expect_table_header; ///< In the case of a table, if the header is saved/loaded.
MemoryDumper *dumper; ///< Memory dumper to write the savegame to.
SaveFilter *sf; ///< Filter to write the savegame to.
ReadBuffer *reader; ///< Savegame reading buffer.
LoadFilter *lf; ///< Filter to read the savegame from.
StringID error_str; ///< the translatable error message to show
char *extra_msg; ///< the error message
uint16 game_speed; ///< The game speed when saving started.
bool saveinprogress; ///< Whether there is currently a save in progress.
};
static SaveLoadParams _sl; ///< Parameters used for/at saveload.
static const std::vector<ChunkHandlerRef> &ChunkHandlers()
{
/* These define the chunks */
extern const ChunkHandlerTable _gamelog_chunk_handlers;
extern const ChunkHandlerTable _map_chunk_handlers;
extern const ChunkHandlerTable _misc_chunk_handlers;
extern const ChunkHandlerTable _name_chunk_handlers;
extern const ChunkHandlerTable _cheat_chunk_handlers;
extern const ChunkHandlerTable _setting_chunk_handlers;
extern const ChunkHandlerTable _company_chunk_handlers;
extern const ChunkHandlerTable _engine_chunk_handlers;
extern const ChunkHandlerTable _veh_chunk_handlers;
extern const ChunkHandlerTable _waypoint_chunk_handlers;
extern const ChunkHandlerTable _depot_chunk_handlers;
extern const ChunkHandlerTable _order_chunk_handlers;
extern const ChunkHandlerTable _town_chunk_handlers;
extern const ChunkHandlerTable _sign_chunk_handlers;
extern const ChunkHandlerTable _station_chunk_handlers;
extern const ChunkHandlerTable _industry_chunk_handlers;
extern const ChunkHandlerTable _economy_chunk_handlers;
extern const ChunkHandlerTable _subsidy_chunk_handlers;
extern const ChunkHandlerTable _cargomonitor_chunk_handlers;
extern const ChunkHandlerTable _goal_chunk_handlers;
extern const ChunkHandlerTable _story_page_chunk_handlers;
extern const ChunkHandlerTable _league_chunk_handlers;
extern const ChunkHandlerTable _ai_chunk_handlers;
extern const ChunkHandlerTable _game_chunk_handlers;
extern const ChunkHandlerTable _animated_tile_chunk_handlers;
extern const ChunkHandlerTable _newgrf_chunk_handlers;
extern const ChunkHandlerTable _group_chunk_handlers;
extern const ChunkHandlerTable _cargopacket_chunk_handlers;
extern const ChunkHandlerTable _autoreplace_chunk_handlers;
extern const ChunkHandlerTable _labelmaps_chunk_handlers;
extern const ChunkHandlerTable _linkgraph_chunk_handlers;
extern const ChunkHandlerTable _airport_chunk_handlers;
extern const ChunkHandlerTable _object_chunk_handlers;
extern const ChunkHandlerTable _persistent_storage_chunk_handlers;
/** List of all chunks in a savegame. */
static const ChunkHandlerTable _chunk_handler_tables[] = {
_gamelog_chunk_handlers,
_map_chunk_handlers,
_misc_chunk_handlers,
_name_chunk_handlers,
_cheat_chunk_handlers,
_setting_chunk_handlers,
_veh_chunk_handlers,
_waypoint_chunk_handlers,
_depot_chunk_handlers,
_order_chunk_handlers,
_industry_chunk_handlers,
_economy_chunk_handlers,
_subsidy_chunk_handlers,
_cargomonitor_chunk_handlers,
_goal_chunk_handlers,
_story_page_chunk_handlers,
_league_chunk_handlers,
_engine_chunk_handlers,
_town_chunk_handlers,
_sign_chunk_handlers,
_station_chunk_handlers,
_company_chunk_handlers,
_ai_chunk_handlers,
_game_chunk_handlers,
_animated_tile_chunk_handlers,
_newgrf_chunk_handlers,
_group_chunk_handlers,
_cargopacket_chunk_handlers,
_autoreplace_chunk_handlers,
_labelmaps_chunk_handlers,
_linkgraph_chunk_handlers,
_airport_chunk_handlers,
_object_chunk_handlers,
_persistent_storage_chunk_handlers,
};
static std::vector<ChunkHandlerRef> _chunk_handlers;
if (_chunk_handlers.empty()) {
for (auto &chunk_handler_table : _chunk_handler_tables) {
for (auto &chunk_handler : chunk_handler_table) {
_chunk_handlers.push_back(chunk_handler);
}
}
}
return _chunk_handlers;
}
/** Null all pointers (convert index -> nullptr) */
static void SlNullPointers()
{
_sl.action = SLA_NULL;
/* We don't want any savegame conversion code to run
* during NULLing; especially those that try to get
* pointers from other pools. */
_sl_version = SAVEGAME_VERSION;
for (const ChunkHandler &ch : ChunkHandlers()) {
Debug(sl, 3, "Nulling pointers for {:c}{:c}{:c}{:c}", ch.id >> 24, ch.id >> 16, ch.id >> 8, ch.id);
ch.FixPointers();
}
assert(_sl.action == SLA_NULL);
}
/**
* Error handler. Sets everything up to show an error message and to clean
* up the mess of a partial savegame load.
* @param string The translatable error message to show.
* @param extra_msg An extra error message coming from one of the APIs.
* @note This function does never return as it throws an exception to
* break out of all the saveload code.
*/
void NORETURN SlError(StringID string, const char *extra_msg)
{
/* Distinguish between loading into _load_check_data vs. normal save/load. */
if (_sl.action == SLA_LOAD_CHECK) {
_load_check_data.error = string;
free(_load_check_data.error_data);
_load_check_data.error_data = (extra_msg == nullptr) ? nullptr : stredup(extra_msg);
} else {
_sl.error_str = string;
free(_sl.extra_msg);
_sl.extra_msg = (extra_msg == nullptr) ? nullptr : stredup(extra_msg);
}
/* We have to nullptr all pointers here; we might be in a state where
* the pointers are actually filled with indices, which means that
* when we access them during cleaning the pool dereferences of
* those indices will be made with segmentation faults as result. */
if (_sl.action == SLA_LOAD || _sl.action == SLA_PTRS) SlNullPointers();
/* Logging could be active. */
GamelogStopAnyAction();
throw std::exception();
}
/**
* Error handler for corrupt savegames. Sets everything up to show the
* error message and to clean up the mess of a partial savegame load.
* @param msg Location the corruption has been spotted.
* @note This function does never return as it throws an exception to
* break out of all the saveload code.
*/
void NORETURN SlErrorCorrupt(const char *msg)
{
SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_SAVEGAME, msg);
}
/**
* Issue an SlErrorCorrupt with a format string.
* @param format format string
* @param ... arguments to format string
* @note This function does never return as it throws an exception to
* break out of all the saveload code.
*/
void NORETURN SlErrorCorruptFmt(const char *format, ...)
{
va_list ap;
char msg[256];
va_start(ap, format);
vseprintf(msg, lastof(msg), format, ap);
va_end(ap);
SlErrorCorrupt(msg);
}
typedef void (*AsyncSaveFinishProc)(); ///< Callback for when the savegame loading is finished.
static std::atomic<AsyncSaveFinishProc> _async_save_finish; ///< Callback to call when the savegame loading is finished.
static std::thread _save_thread; ///< The thread we're using to compress and write a savegame
/**
* Called by save thread to tell we finished saving.
* @param proc The callback to call when saving is done.
*/
static void SetAsyncSaveFinish(AsyncSaveFinishProc proc)
{
if (_exit_game) return;
while (_async_save_finish.load(std::memory_order_acquire) != nullptr) CSleep(10);
_async_save_finish.store(proc, std::memory_order_release);
}
/**
* Handle async save finishes.
*/
void ProcessAsyncSaveFinish()
{
AsyncSaveFinishProc proc = _async_save_finish.exchange(nullptr, std::memory_order_acq_rel);
if (proc == nullptr) return;
proc();
if (_save_thread.joinable()) {
_save_thread.join();
}
}
/**
* Wrapper for reading a byte from the buffer.
* @return The read byte.
*/
byte SlReadByte()
{
return _sl.reader->ReadByte();
}
/**
* Wrapper for writing a byte to the dumper.
* @param b The byte to write.
*/
void SlWriteByte(byte b)
{
_sl.dumper->WriteByte(b);
}
static inline int SlReadUint16()
{
int x = SlReadByte() << 8;
return x | SlReadByte();
}
static inline uint32 SlReadUint32()
{
uint32 x = SlReadUint16() << 16;
return x | SlReadUint16();
}
static inline uint64 SlReadUint64()
{
uint32 x = SlReadUint32();
uint32 y = SlReadUint32();
return (uint64)x << 32 | y;
}
static inline void SlWriteUint16(uint16 v)
{
SlWriteByte(GB(v, 8, 8));
SlWriteByte(GB(v, 0, 8));
}
static inline void SlWriteUint32(uint32 v)
{
SlWriteUint16(GB(v, 16, 16));
SlWriteUint16(GB(v, 0, 16));
}
static inline void SlWriteUint64(uint64 x)
{
SlWriteUint32((uint32)(x >> 32));
SlWriteUint32((uint32)x);
}
/**
* Read in the header descriptor of an object or an array.
* If the highest bit is set (7), then the index is bigger than 127
* elements, so use the next byte to read in the real value.
* The actual value is then both bytes added with the first shifted
* 8 bits to the left, and dropping the highest bit (which only indicated a big index).
* x = ((x & 0x7F) << 8) + SlReadByte();
* @return Return the value of the index
*/
static uint SlReadSimpleGamma()
{
uint i = SlReadByte();
if (HasBit(i, 7)) {
i &= ~0x80;
if (HasBit(i, 6)) {
i &= ~0x40;
if (HasBit(i, 5)) {
i &= ~0x20;
if (HasBit(i, 4)) {
i &= ~0x10;
if (HasBit(i, 3)) {
SlErrorCorrupt("Unsupported gamma");
}
i = SlReadByte(); // 32 bits only.
}
i = (i << 8) | SlReadByte();
}
i = (i << 8) | SlReadByte();
}
i = (i << 8) | SlReadByte();
}
return i;
}
/**
* Write the header descriptor of an object or an array.
* If the element is bigger than 127, use 2 bytes for saving
* and use the highest byte of the first written one as a notice
* that the length consists of 2 bytes, etc.. like this:
* 0xxxxxxx
* 10xxxxxx xxxxxxxx
* 110xxxxx xxxxxxxx xxxxxxxx
* 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx
* 11110--- xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
* We could extend the scheme ad infinum to support arbitrarily
* large chunks, but as sizeof(size_t) == 4 is still very common
* we don't support anything above 32 bits. That's why in the last
* case the 3 most significant bits are unused.
* @param i Index being written
*/
static void SlWriteSimpleGamma(size_t i)
{
if (i >= (1 << 7)) {
if (i >= (1 << 14)) {
if (i >= (1 << 21)) {
if (i >= (1 << 28)) {
assert(i <= UINT32_MAX); // We can only support 32 bits for now.
SlWriteByte((byte)(0xF0));
SlWriteByte((byte)(i >> 24));
} else {
SlWriteByte((byte)(0xE0 | (i >> 24)));
}
SlWriteByte((byte)(i >> 16));
} else {
SlWriteByte((byte)(0xC0 | (i >> 16)));
}
SlWriteByte((byte)(i >> 8));
} else {
SlWriteByte((byte)(0x80 | (i >> 8)));
}
}
SlWriteByte((byte)i);
}
/** Return how many bytes used to encode a gamma value */
static inline uint SlGetGammaLength(size_t i)
{
return 1 + (i >= (1 << 7)) + (i >= (1 << 14)) + (i >= (1 << 21)) + (i >= (1 << 28));
}
static inline uint SlReadSparseIndex()
{
return SlReadSimpleGamma();
}
static inline void SlWriteSparseIndex(uint index)
{
SlWriteSimpleGamma(index);
}
static inline uint SlReadArrayLength()
{
return SlReadSimpleGamma();
}
static inline void SlWriteArrayLength(size_t length)
{
SlWriteSimpleGamma(length);
}
static inline uint SlGetArrayLength(size_t length)
{
return SlGetGammaLength(length);
}
/**
* Return the type as saved/loaded inside the savegame.
*/
static uint8 GetSavegameFileType(const SaveLoad &sld)
{
switch (sld.cmd) {
case SL_VAR:
return GetVarFileType(sld.conv); break;
case SL_STR:
case SL_STDSTR:
case SL_ARR:
case SL_VECTOR:
case SL_DEQUE:
return GetVarFileType(sld.conv) | SLE_FILE_HAS_LENGTH_FIELD; break;
case SL_REF:
return IsSavegameVersionBefore(SLV_69) ? SLE_FILE_U16 : SLE_FILE_U32;
case SL_REFLIST:
return (IsSavegameVersionBefore(SLV_69) ? SLE_FILE_U16 : SLE_FILE_U32) | SLE_FILE_HAS_LENGTH_FIELD;
case SL_SAVEBYTE:
return SLE_FILE_U8;
case SL_STRUCT:
case SL_STRUCTLIST:
return SLE_FILE_STRUCT | SLE_FILE_HAS_LENGTH_FIELD;
default: NOT_REACHED();
}
}
/**
* Return the size in bytes of a certain type of normal/atomic variable
* as it appears in memory. See VarTypes
* @param conv VarType type of variable that is used for calculating the size
* @return Return the size of this type in bytes
*/
static inline uint SlCalcConvMemLen(VarType conv)
{
static const byte conv_mem_size[] = {1, 1, 1, 2, 2, 4, 4, 8, 8, 0};
switch (GetVarMemType(conv)) {
case SLE_VAR_STRB:
case SLE_VAR_STR:
case SLE_VAR_STRQ:
return SlReadArrayLength();
default:
uint8 type = GetVarMemType(conv) >> 4;
assert(type < lengthof(conv_mem_size));
return conv_mem_size[type];
}
}
/**
* Return the size in bytes of a certain type of normal/atomic variable
* as it appears in a saved game. See VarTypes
* @param conv VarType type of variable that is used for calculating the size
* @return Return the size of this type in bytes
*/
static inline byte SlCalcConvFileLen(VarType conv)
{
static const byte conv_file_size[] = {0, 1, 1, 2, 2, 4, 4, 8, 8, 2};
uint8 type = GetVarFileType(conv);
assert(type < lengthof(conv_file_size));
return conv_file_size[type];
}
/** Return the size in bytes of a reference (pointer) */
static inline size_t SlCalcRefLen()
{
return IsSavegameVersionBefore(SLV_69) ? 2 : 4;
}
void SlSetArrayIndex(uint index)
{
_sl.need_length = NL_WANTLENGTH;
_sl.array_index = index;
}
static size_t _next_offs;
/**
* Iterate through the elements of an array and read the whole thing
* @return The index of the object, or -1 if we have reached the end of current block
*/
int SlIterateArray()
{
int index;
/* After reading in the whole array inside the loop
* we must have read in all the data, so we must be at end of current block. */
if (_next_offs != 0 && _sl.reader->GetSize() != _next_offs) SlErrorCorrupt("Invalid chunk size");
for (;;) {
uint length = SlReadArrayLength();
if (length == 0) {
assert(!_sl.expect_table_header);
_next_offs = 0;
return -1;
}
_sl.obj_len = --length;
_next_offs = _sl.reader->GetSize() + length;
if (_sl.expect_table_header) {
_sl.expect_table_header = false;
return INT32_MAX;
}
switch (_sl.block_mode) {
case CH_SPARSE_TABLE:
case CH_SPARSE_ARRAY: index = (int)SlReadSparseIndex(); break;
case CH_TABLE:
case CH_ARRAY: index = _sl.array_index++; break;
default:
Debug(sl, 0, "SlIterateArray error");
return -1; // error
}
if (length != 0) return index;
}
}
/**
* Skip an array or sparse array
*/
void SlSkipArray()
{
while (SlIterateArray() != -1) {
SlSkipBytes(_next_offs - _sl.reader->GetSize());
}
}
/**
* Sets the length of either a RIFF object or the number of items in an array.
* This lets us load an object or an array of arbitrary size
* @param length The length of the sought object/array
*/
void SlSetLength(size_t length)
{
assert(_sl.action == SLA_SAVE);
switch (_sl.need_length) {
case NL_WANTLENGTH:
_sl.need_length = NL_NONE;
if ((_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE) && _sl.expect_table_header) {
_sl.expect_table_header = false;
SlWriteArrayLength(length + 1);
break;
}
switch (_sl.block_mode) {
case CH_RIFF:
/* Ugly encoding of >16M RIFF chunks
* The lower 24 bits are normal
* The uppermost 4 bits are bits 24:27 */
assert(length < (1 << 28));
SlWriteUint32((uint32)((length & 0xFFFFFF) | ((length >> 24) << 28)));
break;
case CH_TABLE:
case CH_ARRAY:
assert(_sl.last_array_index <= _sl.array_index);
while (++_sl.last_array_index <= _sl.array_index) {
SlWriteArrayLength(1);
}
SlWriteArrayLength(length + 1);
break;
case CH_SPARSE_TABLE:
case CH_SPARSE_ARRAY:
SlWriteArrayLength(length + 1 + SlGetArrayLength(_sl.array_index)); // Also include length of sparse index.
SlWriteSparseIndex(_sl.array_index);
break;
default: NOT_REACHED();
}
break;
case NL_CALCLENGTH:
_sl.obj_len += (int)length;
break;
default: NOT_REACHED();
}
}
/**
* Save/Load bytes. These do not need to be converted to Little/Big Endian
* so directly write them or read them to/from file
* @param ptr The source or destination of the object being manipulated
* @param length number of bytes this fast CopyBytes lasts
*/
static void SlCopyBytes(void *ptr, size_t length)
{
byte *p = (byte *)ptr;
switch (_sl.action) {
case SLA_LOAD_CHECK:
case SLA_LOAD:
for (; length != 0; length--) *p++ = SlReadByte();
break;
case SLA_SAVE:
for (; length != 0; length--) SlWriteByte(*p++);
break;
default: NOT_REACHED();
}
}
/** Get the length of the current object */
size_t SlGetFieldLength()
{
return _sl.obj_len;
}
/**
* Return a signed-long version of the value of a setting
* @param ptr pointer to the variable
* @param conv type of variable, can be a non-clean
* type, eg one with other flags because it is parsed
* @return returns the value of the pointer-setting
*/
int64 ReadValue(const void *ptr, VarType conv)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: return (*(const bool *)ptr != 0);
case SLE_VAR_I8: return *(const int8 *)ptr;
case SLE_VAR_U8: return *(const byte *)ptr;
case SLE_VAR_I16: return *(const int16 *)ptr;
case SLE_VAR_U16: return *(const uint16*)ptr;
case SLE_VAR_I32: return *(const int32 *)ptr;
case SLE_VAR_U32: return *(const uint32*)ptr;
case SLE_VAR_I64: return *(const int64 *)ptr;
case SLE_VAR_U64: return *(const uint64*)ptr;
case SLE_VAR_NULL:return 0;
default: NOT_REACHED();
}
}
/**
* Write the value of a setting
* @param ptr pointer to the variable
* @param conv type of variable, can be a non-clean type, eg
* with other flags. It is parsed upon read
* @param val the new value being given to the variable
*/
void WriteValue(void *ptr, VarType conv, int64 val)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: *(bool *)ptr = (val != 0); break;
case SLE_VAR_I8: *(int8 *)ptr = val; break;
case SLE_VAR_U8: *(byte *)ptr = val; break;
case SLE_VAR_I16: *(int16 *)ptr = val; break;
case SLE_VAR_U16: *(uint16*)ptr = val; break;
case SLE_VAR_I32: *(int32 *)ptr = val; break;
case SLE_VAR_U32: *(uint32*)ptr = val; break;
case SLE_VAR_I64: *(int64 *)ptr = val; break;
case SLE_VAR_U64: *(uint64*)ptr = val; break;
case SLE_VAR_NAME: *reinterpret_cast<std::string *>(ptr) = CopyFromOldName(val); break;
case SLE_VAR_NULL: break;
default: NOT_REACHED();
}
}
/**
* Handle all conversion and typechecking of variables here.
* In the case of saving, read in the actual value from the struct
* and then write them to file, endian safely. Loading a value
* goes exactly the opposite way
* @param ptr The object being filled/read
* @param conv VarType type of the current element of the struct
*/
static void SlSaveLoadConv(void *ptr, VarType conv)
{
switch (_sl.action) {
case SLA_SAVE: {
int64 x = ReadValue(ptr, conv);
/* Write the value to the file and check if its value is in the desired range */
switch (GetVarFileType(conv)) {
case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break;
case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break;
case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break;
case SLE_FILE_STRINGID:
case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break;
case SLE_FILE_I32:
case SLE_FILE_U32: SlWriteUint32((uint32)x);break;
case SLE_FILE_I64:
case SLE_FILE_U64: SlWriteUint64(x);break;
default: NOT_REACHED();
}
break;
}
case SLA_LOAD_CHECK:
case SLA_LOAD: {
int64 x;
/* Read a value from the file */
switch (GetVarFileType(conv)) {
case SLE_FILE_I8: x = (int8 )SlReadByte(); break;
case SLE_FILE_U8: x = (byte )SlReadByte(); break;
case SLE_FILE_I16: x = (int16 )SlReadUint16(); break;
case SLE_FILE_U16: x = (uint16)SlReadUint16(); break;
case SLE_FILE_I32: x = (int32 )SlReadUint32(); break;
case SLE_FILE_U32: x = (uint32)SlReadUint32(); break;
case SLE_FILE_I64: x = (int64 )SlReadUint64(); break;
case SLE_FILE_U64: x = (uint64)SlReadUint64(); break;
case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break;
default: NOT_REACHED();
}
/* Write The value to the struct. These ARE endian safe. */
WriteValue(ptr, conv, x);
break;
}
case SLA_PTRS: break;
case SLA_NULL: break;
default: NOT_REACHED();
}
}
/**
* Calculate the net length of a string. This is in almost all cases
* just strlen(), but if the string is not properly terminated, we'll
* resort to the maximum length of the buffer.
* @param ptr pointer to the stringbuffer
* @param length maximum length of the string (buffer). If -1 we don't care
* about a maximum length, but take string length as it is.
* @return return the net length of the string
*/
static inline size_t SlCalcNetStringLen(const char *ptr, size_t length)
{
if (ptr == nullptr) return 0;
return std::min(strlen(ptr), length - 1);
}
/**
* Calculate the gross length of the string that it
* will occupy in the savegame. This includes the real length, returned
* by SlCalcNetStringLen and the length that the index will occupy.
* @param ptr pointer to the stringbuffer
* @param length maximum length of the string (buffer size, etc.)
* @param conv type of data been used
* @return return the gross length of the string
*/
static inline size_t SlCalcStringLen(const void *ptr, size_t length, VarType conv)
{
size_t len;
const char *str;
switch (GetVarMemType(conv)) {
default: NOT_REACHED();
case SLE_VAR_STR:
case SLE_VAR_STRQ:
str = *(const char * const *)ptr;
len = SIZE_MAX;
break;
case SLE_VAR_STRB:
str = (const char *)ptr;
len = length;
break;
}
len = SlCalcNetStringLen(str, len);
return len + SlGetArrayLength(len); // also include the length of the index
}
/**
* Calculate the gross length of the string that it
* will occupy in the savegame. This includes the real length, returned
* by SlCalcNetStringLen and the length that the index will occupy.
* @param ptr Pointer to the \c std::string.
* @return The gross length of the string.
*/
static inline size_t SlCalcStdStringLen(const void *ptr)
{
const std::string *str = reinterpret_cast<const std::string *>(ptr);
size_t len = str->length();
return len + SlGetArrayLength(len); // also include the length of the index
}
/**
* Save/Load a string.
* @param ptr the string being manipulated
* @param length of the string (full length)
* @param conv must be SLE_FILE_STRING
*/
static void SlString(void *ptr, size_t length, VarType conv)
{
switch (_sl.action) {
case SLA_SAVE: {
size_t len;
switch (GetVarMemType(conv)) {
default: NOT_REACHED();
case SLE_VAR_STRB:
len = SlCalcNetStringLen((char *)ptr, length);
break;
case SLE_VAR_STR:
case SLE_VAR_STRQ:
ptr = *(char **)ptr;
len = SlCalcNetStringLen((char *)ptr, SIZE_MAX);
break;
}
SlWriteArrayLength(len);
SlCopyBytes(ptr, len);
break;
}
case SLA_LOAD_CHECK:
case SLA_LOAD: {
size_t len = SlReadArrayLength();
switch (GetVarMemType(conv)) {
default: NOT_REACHED();
case SLE_VAR_NULL:
SlSkipBytes(len);
return;
case SLE_VAR_STRB:
if (len >= length) {
Debug(sl, 1, "String length in savegame is bigger than buffer, truncating");
SlCopyBytes(ptr, length);
SlSkipBytes(len - length);
len = length - 1;
} else {
SlCopyBytes(ptr, len);
}
break;
case SLE_VAR_STR:
case SLE_VAR_STRQ: // Malloc'd string, free previous incarnation, and allocate
free(*(char **)ptr);
if (len == 0) {
*(char **)ptr = nullptr;
return;
} else {
*(char **)ptr = MallocT<char>(len + 1); // terminating '\0'
ptr = *(char **)ptr;
SlCopyBytes(ptr, len);
}
break;
}
((char *)ptr)[len] = '\0'; // properly terminate the string
StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK;
if ((conv & SLF_ALLOW_CONTROL) != 0) {
settings = settings | SVS_ALLOW_CONTROL_CODE;
if (IsSavegameVersionBefore(SLV_169)) {
str_fix_scc_encoded((char *)ptr, (char *)ptr + len);
}
}
if ((conv & SLF_ALLOW_NEWLINE) != 0) {
settings = settings | SVS_ALLOW_NEWLINE;
}
StrMakeValidInPlace((char *)ptr, (char *)ptr + len, settings);
break;
}
case SLA_PTRS: break;
case SLA_NULL: break;
default: NOT_REACHED();
}
}
/**
* Save/Load a \c std::string.
* @param ptr the string being manipulated
* @param conv must be SLE_FILE_STRING
*/
static void SlStdString(void *ptr, VarType conv)
{
std::string *str = reinterpret_cast<std::string *>(ptr);
switch (_sl.action) {
case SLA_SAVE: {
size_t len = str->length();
SlWriteArrayLength(len);
SlCopyBytes(const_cast<void *>(static_cast<const void *>(str->c_str())), len);
break;
}
case SLA_LOAD_CHECK:
case SLA_LOAD: {
size_t len = SlReadArrayLength();
if (GetVarMemType(conv) == SLE_VAR_NULL) {
SlSkipBytes(len);
return;
}
char *buf = AllocaM(char, len + 1);
SlCopyBytes(buf, len);
buf[len] = '\0'; // properly terminate the string
StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK;
if ((conv & SLF_ALLOW_CONTROL) != 0) {
settings = settings | SVS_ALLOW_CONTROL_CODE;
if (IsSavegameVersionBefore(SLV_169)) {
str_fix_scc_encoded(buf, buf + len);
}
}
if ((conv & SLF_ALLOW_NEWLINE) != 0) {
settings = settings | SVS_ALLOW_NEWLINE;
}
StrMakeValidInPlace(buf, buf + len, settings);
// Store sanitized string.
str->assign(buf);
}
case SLA_PTRS: break;
case SLA_NULL: break;
default: NOT_REACHED();
}
}
/**
* Internal function to save/Load a list of SL_VARs.
* SlCopy() and SlArray() are very similar, with the exception of the header.
* This function represents the common part.
* @param object The object being manipulated.
* @param length The length of the object in elements
* @param conv VarType type of the items.
*/
static void SlCopyInternal(void *object, size_t length, VarType conv)
{
if (GetVarMemType(conv) == SLE_VAR_NULL) {
assert(_sl.action != SLA_SAVE); // Use SL_NULL if you want to write null-bytes
SlSkipBytes(length * SlCalcConvFileLen(conv));
return;
}
/* NOTICE - handle some buggy stuff, in really old versions everything was saved
* as a byte-type. So detect this, and adjust object size accordingly */
if (_sl.action != SLA_SAVE && _sl_version == 0) {
/* all objects except difficulty settings */
if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID ||
conv == SLE_INT32 || conv == SLE_UINT32) {
SlCopyBytes(object, length * SlCalcConvFileLen(conv));
return;
}
/* used for conversion of Money 32bit->64bit */
if (conv == (SLE_FILE_I32 | SLE_VAR_I64)) {
for (uint i = 0; i < length; i++) {
((int64*)object)[i] = (int32)BSWAP32(SlReadUint32());
}
return;
}
}
/* If the size of elements is 1 byte both in file and memory, no special
* conversion is needed, use specialized copy-copy function to speed up things */
if (conv == SLE_INT8 || conv == SLE_UINT8) {
SlCopyBytes(object, length);
} else {
byte *a = (byte*)object;
byte mem_size = SlCalcConvMemLen(conv);
for (; length != 0; length --) {
SlSaveLoadConv(a, conv);
a += mem_size; // get size
}
}
}
/**
* Copy a list of SL_VARs to/from a savegame.
* These entries are copied as-is, and you as caller have to make sure things
* like length-fields are calculated correctly.
* @param object The object being manipulated.
* @param length The length of the object in elements
* @param conv VarType type of the items.
*/
void SlCopy(void *object, size_t length, VarType conv)
{
if (_sl.action == SLA_PTRS || _sl.action == SLA_NULL) return;
/* Automatically calculate the length? */
if (_sl.need_length != NL_NONE) {
SlSetLength(length * SlCalcConvFileLen(conv));
/* Determine length only? */
if (_sl.need_length == NL_CALCLENGTH) return;
}
SlCopyInternal(object, length, conv);
}
/**
* Return the size in bytes of a certain type of atomic array
* @param length The length of the array counted in elements
* @param conv VarType type of the variable that is used in calculating the size
*/
static inline size_t SlCalcArrayLen(size_t length, VarType conv)
{
return SlCalcConvFileLen(conv) * length + SlGetArrayLength(length);
}
/**
* Save/Load the length of the array followed by the array of SL_VAR elements.
* @param array The array being manipulated
* @param length The length of the array in elements
* @param conv VarType type of the atomic array (int, byte, uint64, etc.)
*/
static void SlArray(void *array, size_t length, VarType conv)
{
switch (_sl.action) {
case SLA_SAVE:
SlWriteArrayLength(length);
SlCopyInternal(array, length, conv);
return;
case SLA_LOAD_CHECK:
case SLA_LOAD: {
if (!IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) {
size_t sv_length = SlReadArrayLength();
if (GetVarMemType(conv) == SLE_VAR_NULL) {
/* We don't know this field, so we assume the length in the savegame is correct. */
length = sv_length;
} else if (sv_length != length) {
/* If the SLE_ARR changes size, a savegame bump is required
* and the developer should have written conversion lines.
* Error out to make this more visible. */
SlErrorCorrupt("Fixed-length array is of wrong length");
}
}
SlCopyInternal(array, length, conv);
return;
}
case SLA_PTRS:
case SLA_NULL:
return;
default:
NOT_REACHED();
}
}
/**
* Pointers cannot be saved to a savegame, so this functions gets
* the index of the item, and if not available, it hussles with
* pointers (looks really bad :()
* Remember that a nullptr item has value 0, and all
* indices have +1, so vehicle 0 is saved as index 1.
* @param obj The object that we want to get the index of
* @param rt SLRefType type of the object the index is being sought of
* @return Return the pointer converted to an index of the type pointed to
*/
static size_t ReferenceToInt(const void *obj, SLRefType rt)
{
assert(_sl.action == SLA_SAVE);
if (obj == nullptr) return 0;
switch (rt) {
case REF_VEHICLE_OLD: // Old vehicles we save as new ones
case REF_VEHICLE: return ((const Vehicle*)obj)->index + 1;
case REF_STATION: return ((const Station*)obj)->index + 1;
case REF_TOWN: return ((const Town*)obj)->index + 1;
case REF_ORDER: return ((const Order*)obj)->index + 1;
case REF_ROADSTOPS: return ((const RoadStop*)obj)->index + 1;
case REF_ENGINE_RENEWS: return ((const EngineRenew*)obj)->index + 1;
case REF_CARGO_PACKET: return ((const CargoPacket*)obj)->index + 1;
case REF_ORDERLIST: return ((const OrderList*)obj)->index + 1;
case REF_STORAGE: return ((const PersistentStorage*)obj)->index + 1;
case REF_LINK_GRAPH: return ((const LinkGraph*)obj)->index + 1;
case REF_LINK_GRAPH_JOB: return ((const LinkGraphJob*)obj)->index + 1;
default: NOT_REACHED();
}
}
/**
* Pointers cannot be loaded from a savegame, so this function
* gets the index from the savegame and returns the appropriate
* pointer from the already loaded base.
* Remember that an index of 0 is a nullptr pointer so all indices
* are +1 so vehicle 0 is saved as 1.
* @param index The index that is being converted to a pointer
* @param rt SLRefType type of the object the pointer is sought of
* @return Return the index converted to a pointer of any type
*/
static void *IntToReference(size_t index, SLRefType rt)
{
static_assert(sizeof(size_t) <= sizeof(void *));
assert(_sl.action == SLA_PTRS);
/* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE,
* and should be loaded like that */
if (rt == REF_VEHICLE_OLD && !IsSavegameVersionBefore(SLV_4, 4)) {
rt = REF_VEHICLE;
}
/* No need to look up nullptr pointers, just return immediately */
if (index == (rt == REF_VEHICLE_OLD ? 0xFFFF : 0)) return nullptr;
/* Correct index. Old vehicles were saved differently:
* invalid vehicle was 0xFFFF, now we use 0x0000 for everything invalid. */
if (rt != REF_VEHICLE_OLD) index--;
switch (rt) {
case REF_ORDERLIST:
if (OrderList::IsValidID(index)) return OrderList::Get(index);
SlErrorCorrupt("Referencing invalid OrderList");
case REF_ORDER:
if (Order::IsValidID(index)) return Order::Get(index);
/* in old versions, invalid order was used to mark end of order list */
if (IsSavegameVersionBefore(SLV_5, 2)) return nullptr;
SlErrorCorrupt("Referencing invalid Order");
case REF_VEHICLE_OLD:
case REF_VEHICLE:
if (Vehicle::IsValidID(index)) return Vehicle::Get(index);
SlErrorCorrupt("Referencing invalid Vehicle");
case REF_STATION:
if (Station::IsValidID(index)) return Station::Get(index);
SlErrorCorrupt("Referencing invalid Station");
case REF_TOWN:
if (Town::IsValidID(index)) return Town::Get(index);
SlErrorCorrupt("Referencing invalid Town");
case REF_ROADSTOPS:
if (RoadStop::IsValidID(index)) return RoadStop::Get(index);
SlErrorCorrupt("Referencing invalid RoadStop");
case REF_ENGINE_RENEWS:
if (EngineRenew::IsValidID(index)) return EngineRenew::Get(index);
SlErrorCorrupt("Referencing invalid EngineRenew");
case REF_CARGO_PACKET:
if (CargoPacket::IsValidID(index)) return CargoPacket::Get(index);
SlErrorCorrupt("Referencing invalid CargoPacket");
case REF_STORAGE:
if (PersistentStorage::IsValidID(index)) return PersistentStorage::Get(index);
SlErrorCorrupt("Referencing invalid PersistentStorage");
case REF_LINK_GRAPH:
if (LinkGraph::IsValidID(index)) return LinkGraph::Get(index);
SlErrorCorrupt("Referencing invalid LinkGraph");
case REF_LINK_GRAPH_JOB:
if (LinkGraphJob::IsValidID(index)) return LinkGraphJob::Get(index);
SlErrorCorrupt("Referencing invalid LinkGraphJob");
default: NOT_REACHED();
}
}
/**
* Handle conversion for references.
* @param ptr The object being filled/read.
* @param conv VarType type of the current element of the struct.
*/
void SlSaveLoadRef(void *ptr, VarType conv)
{
switch (_sl.action) {
case SLA_SAVE:
SlWriteUint32((uint32)ReferenceToInt(*(void **)ptr, (SLRefType)conv));
break;
case SLA_LOAD_CHECK:
case SLA_LOAD:
*(size_t *)ptr = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : SlReadUint32();
break;
case SLA_PTRS:
*(void **)ptr = IntToReference(*(size_t *)ptr, (SLRefType)conv);
break;
case SLA_NULL:
*(void **)ptr = nullptr;
break;
default: NOT_REACHED();
}
}
/**
* Template class to help with list-like types.
*/
template <template<typename, typename> typename Tstorage, typename Tvar, typename Tallocator = std::allocator<Tvar>>
class SlStorageHelper {
typedef Tstorage<Tvar, Tallocator> SlStorageT;
public:
/**
* Internal templated helper to return the size in bytes of a list-like type.
* @param storage The storage to find the size of
* @param conv VarType type of variable that is used for calculating the size
* @param cmd The SaveLoadType ware are saving/loading.
*/
static size_t SlCalcLen(const void *storage, VarType conv, SaveLoadType cmd = SL_VAR)
{
assert(cmd == SL_VAR || cmd == SL_REF);
const SlStorageT *list = static_cast<const SlStorageT *>(storage);
int type_size = SlGetArrayLength(list->size());
int item_size = SlCalcConvFileLen(cmd == SL_VAR ? conv : (VarType)SLE_FILE_U32);
return list->size() * item_size + type_size;
}
static void SlSaveLoadMember(SaveLoadType cmd, Tvar *item, VarType conv)
{
switch (cmd) {
case SL_VAR: SlSaveLoadConv(item, conv); break;
case SL_REF: SlSaveLoadRef(item, conv); break;
default:
NOT_REACHED();
}
}
/**
* Internal templated helper to save/load a list-like type.
* @param storage The storage being manipulated.
* @param conv VarType type of variable that is used for calculating the size.
* @param cmd The SaveLoadType ware are saving/loading.
*/
static void SlSaveLoad(void *storage, VarType conv, SaveLoadType cmd = SL_VAR)
{
assert(cmd == SL_VAR || cmd == SL_REF);
SlStorageT *list = static_cast<SlStorageT *>(storage);
switch (_sl.action) {
case SLA_SAVE:
SlWriteArrayLength(list->size());
for (auto &item : *list) {
SlSaveLoadMember(cmd, &item, conv);
}
break;
case SLA_LOAD_CHECK:
case SLA_LOAD: {
size_t length;
switch (cmd) {
case SL_VAR: length = IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH) ? SlReadUint32() : SlReadArrayLength(); break;
case SL_REF: length = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH) ? SlReadUint32() : SlReadArrayLength(); break;
default: NOT_REACHED();
}
/* Load each value and push to the end of the storage. */
for (size_t i = 0; i < length; i++) {
Tvar &data = list->emplace_back();
SlSaveLoadMember(cmd, &data, conv);
}
break;
}
case SLA_PTRS:
for (auto &item : *list) {
SlSaveLoadMember(cmd, &item, conv);
}
break;
case SLA_NULL:
list->clear();
break;
default: NOT_REACHED();
}
}
};
/**
* Return the size in bytes of a list.
* @param list The std::list to find the size of.
* @param conv VarType type of variable that is used for calculating the size.
*/
static inline size_t SlCalcRefListLen(const void *list, VarType conv)
{
return SlStorageHelper<std::list, void *>::SlCalcLen(list, conv, SL_REF);
}
/**
* Save/Load a list.
* @param list The list being manipulated.
* @param conv VarType type of variable that is used for calculating the size.
*/
static void SlRefList(void *list, VarType conv)
{
/* Automatically calculate the length? */
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcRefListLen(list, conv));
/* Determine length only? */
if (_sl.need_length == NL_CALCLENGTH) return;
}
SlStorageHelper<std::list, void *>::SlSaveLoad(list, conv, SL_REF);
}
/**
* Return the size in bytes of a std::deque.
* @param deque The std::deque to find the size of
* @param conv VarType type of variable that is used for calculating the size
*/
static inline size_t SlCalcDequeLen(const void *deque, VarType conv)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: return SlStorageHelper<std::deque, bool>::SlCalcLen(deque, conv);
case SLE_VAR_I8: return SlStorageHelper<std::deque, int8>::SlCalcLen(deque, conv);
case SLE_VAR_U8: return SlStorageHelper<std::deque, uint8>::SlCalcLen(deque, conv);
case SLE_VAR_I16: return SlStorageHelper<std::deque, int16>::SlCalcLen(deque, conv);
case SLE_VAR_U16: return SlStorageHelper<std::deque, uint16>::SlCalcLen(deque, conv);
case SLE_VAR_I32: return SlStorageHelper<std::deque, int32>::SlCalcLen(deque, conv);
case SLE_VAR_U32: return SlStorageHelper<std::deque, uint32>::SlCalcLen(deque, conv);
case SLE_VAR_I64: return SlStorageHelper<std::deque, int64>::SlCalcLen(deque, conv);
case SLE_VAR_U64: return SlStorageHelper<std::deque, uint64>::SlCalcLen(deque, conv);
default: NOT_REACHED();
}
}
/**
* Save/load a std::deque.
* @param deque The std::deque being manipulated
* @param conv VarType type of variable that is used for calculating the size
*/
static void SlDeque(void *deque, VarType conv)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: SlStorageHelper<std::deque, bool>::SlSaveLoad(deque, conv); break;
case SLE_VAR_I8: SlStorageHelper<std::deque, int8>::SlSaveLoad(deque, conv); break;
case SLE_VAR_U8: SlStorageHelper<std::deque, uint8>::SlSaveLoad(deque, conv); break;
case SLE_VAR_I16: SlStorageHelper<std::deque, int16>::SlSaveLoad(deque, conv); break;
case SLE_VAR_U16: SlStorageHelper<std::deque, uint16>::SlSaveLoad(deque, conv); break;
case SLE_VAR_I32: SlStorageHelper<std::deque, int32>::SlSaveLoad(deque, conv); break;
case SLE_VAR_U32: SlStorageHelper<std::deque, uint32>::SlSaveLoad(deque, conv); break;
case SLE_VAR_I64: SlStorageHelper<std::deque, int64>::SlSaveLoad(deque, conv); break;
case SLE_VAR_U64: SlStorageHelper<std::deque, uint64>::SlSaveLoad(deque, conv); break;
default: NOT_REACHED();
}
}
/**
* Return the size in bytes of a std::vector.
* @param vector The std::vector to find the size of
* @param conv VarType type of variable that is used for calculating the size
*/
static inline size_t SlCalcVectorLen(const void *vector, VarType conv)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: NOT_REACHED(); // Not supported
case SLE_VAR_I8: return SlStorageHelper<std::vector, int8>::SlCalcLen(vector, conv);
case SLE_VAR_U8: return SlStorageHelper<std::vector, uint8>::SlCalcLen(vector, conv);
case SLE_VAR_I16: return SlStorageHelper<std::vector, int16>::SlCalcLen(vector, conv);
case SLE_VAR_U16: return SlStorageHelper<std::vector, uint16>::SlCalcLen(vector, conv);
case SLE_VAR_I32: return SlStorageHelper<std::vector, int32>::SlCalcLen(vector, conv);
case SLE_VAR_U32: return SlStorageHelper<std::vector, uint32>::SlCalcLen(vector, conv);
case SLE_VAR_I64: return SlStorageHelper<std::vector, int64>::SlCalcLen(vector, conv);
case SLE_VAR_U64: return SlStorageHelper<std::vector, uint64>::SlCalcLen(vector, conv);
default: NOT_REACHED();
}
}
/**
* Save/load a std::vector.
* @param vector The std::vector being manipulated
* @param conv VarType type of variable that is used for calculating the size
*/
static void SlVector(void *vector, VarType conv)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: NOT_REACHED(); // Not supported
case SLE_VAR_I8: SlStorageHelper<std::vector, int8>::SlSaveLoad(vector, conv); break;
case SLE_VAR_U8: SlStorageHelper<std::vector, uint8>::SlSaveLoad(vector, conv); break;
case SLE_VAR_I16: SlStorageHelper<std::vector, int16>::SlSaveLoad(vector, conv); break;
case SLE_VAR_U16: SlStorageHelper<std::vector, uint16>::SlSaveLoad(vector, conv); break;
case SLE_VAR_I32: SlStorageHelper<std::vector, int32>::SlSaveLoad(vector, conv); break;
case SLE_VAR_U32: SlStorageHelper<std::vector, uint32>::SlSaveLoad(vector, conv); break;
case SLE_VAR_I64: SlStorageHelper<std::vector, int64>::SlSaveLoad(vector, conv); break;
case SLE_VAR_U64: SlStorageHelper<std::vector, uint64>::SlSaveLoad(vector, conv); break;
default: NOT_REACHED();
}
}
/** Are we going to save this object or not? */
static inline bool SlIsObjectValidInSavegame(const SaveLoad &sld)
{
return (_sl_version >= sld.version_from && _sl_version < sld.version_to);
}
/**
* Calculate the size of the table header.
* @param slt The SaveLoad table with objects to save/load.
* @return size of given object.
*/
static size_t SlCalcTableHeader(const SaveLoadTable &slt)
{
size_t length = 0;
for (auto &sld : slt) {
if (!SlIsObjectValidInSavegame(sld)) continue;
length += SlCalcConvFileLen(SLE_UINT8);
length += SlCalcStdStringLen(&sld.name);
}
length += SlCalcConvFileLen(SLE_UINT8); // End-of-list entry.
for (auto &sld : slt) {
if (!SlIsObjectValidInSavegame(sld)) continue;
if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) {
length += SlCalcTableHeader(sld.handler->GetDescription());
}
}
return length;
}
/**
* Calculate the size of an object.
* @param object to be measured.
* @param slt The SaveLoad table with objects to save/load.
* @return size of given object.
*/
size_t SlCalcObjLength(const void *object, const SaveLoadTable &slt)
{
size_t length = 0;
/* Need to determine the length and write a length tag. */
for (auto &sld : slt) {
length += SlCalcObjMemberLength(object, sld);
}
return length;
}
size_t SlCalcObjMemberLength(const void *object, const SaveLoad &sld)
{
assert(_sl.action == SLA_SAVE);
if (!SlIsObjectValidInSavegame(sld)) return 0;
switch (sld.cmd) {
case SL_VAR: return SlCalcConvFileLen(sld.conv);
case SL_REF: return SlCalcRefLen();
case SL_ARR: return SlCalcArrayLen(sld.length, sld.conv);
case SL_STR: return SlCalcStringLen(GetVariableAddress(object, sld), sld.length, sld.conv);
case SL_REFLIST: return SlCalcRefListLen(GetVariableAddress(object, sld), sld.conv);
case SL_DEQUE: return SlCalcDequeLen(GetVariableAddress(object, sld), sld.conv);
case SL_VECTOR: return SlCalcVectorLen(GetVariableAddress(object, sld), sld.conv);
case SL_STDSTR: return SlCalcStdStringLen(GetVariableAddress(object, sld));
case SL_SAVEBYTE: return 1; // a byte is logically of size 1
case SL_NULL: return SlCalcConvFileLen(sld.conv) * sld.length;
case SL_STRUCT:
case SL_STRUCTLIST: {
NeedLength old_need_length = _sl.need_length;
size_t old_obj_len = _sl.obj_len;
_sl.need_length = NL_CALCLENGTH;
_sl.obj_len = 0;
/* Pretend that we are saving to collect the object size. Other
* means are difficult, as we don't know the length of the list we
* are about to store. */
sld.handler->Save(const_cast<void *>(object));
size_t length = _sl.obj_len;
_sl.obj_len = old_obj_len;
_sl.need_length = old_need_length;
if (sld.cmd == SL_STRUCT) {
length += SlGetArrayLength(1);
}
return length;
}
default: NOT_REACHED();
}
return 0;
}
/**
* Check whether the variable size of the variable in the saveload configuration
* matches with the actual variable size.
* @param sld The saveload configuration to test.
*/
[[maybe_unused]] static bool IsVariableSizeRight(const SaveLoad &sld)
{
if (GetVarMemType(sld.conv) == SLE_VAR_NULL) return true;
switch (sld.cmd) {
case SL_VAR:
switch (GetVarMemType(sld.conv)) {
case SLE_VAR_BL:
return sld.size == sizeof(bool);
case SLE_VAR_I8:
case SLE_VAR_U8:
return sld.size == sizeof(int8);
case SLE_VAR_I16:
case SLE_VAR_U16:
return sld.size == sizeof(int16);
case SLE_VAR_I32:
case SLE_VAR_U32:
return sld.size == sizeof(int32);
case SLE_VAR_I64:
case SLE_VAR_U64:
return sld.size == sizeof(int64);
case SLE_VAR_NAME:
return sld.size == sizeof(std::string);
default:
return sld.size == sizeof(void *);
}
case SL_REF:
/* These should all be pointer sized. */
return sld.size == sizeof(void *);
case SL_STR:
/* These should be pointer sized, or fixed array. */
return sld.size == sizeof(void *) || sld.size == sld.length;
case SL_STDSTR:
/* These should be all pointers to std::string. */
return sld.size == sizeof(std::string);
default:
return true;
}
}
static bool SlObjectMember(void *object, const SaveLoad &sld)
{
assert(IsVariableSizeRight(sld));
if (!SlIsObjectValidInSavegame(sld)) return false;
VarType conv = GB(sld.conv, 0, 8);
switch (sld.cmd) {
case SL_VAR:
case SL_REF:
case SL_ARR:
case SL_STR:
case SL_REFLIST:
case SL_DEQUE:
case SL_VECTOR:
case SL_STDSTR: {
void *ptr = GetVariableAddress(object, sld);
switch (sld.cmd) {
case SL_VAR: SlSaveLoadConv(ptr, conv); break;
case SL_REF: SlSaveLoadRef(ptr, conv); break;
case SL_ARR: SlArray(ptr, sld.length, conv); break;
case SL_STR: SlString(ptr, sld.length, sld.conv); break;
case SL_REFLIST: SlRefList(ptr, conv); break;
case SL_DEQUE: SlDeque(ptr, conv); break;
case SL_VECTOR: SlVector(ptr, conv); break;
case SL_STDSTR: SlStdString(ptr, sld.conv); break;
default: NOT_REACHED();
}
break;
}
/* SL_SAVEBYTE writes a value to the savegame to identify the type of an object.
* When loading, the value is read explicitly with SlReadByte() to determine which
* object description to use. */
case SL_SAVEBYTE: {
void *ptr = GetVariableAddress(object, sld);
switch (_sl.action) {
case SLA_SAVE: SlWriteByte(*(uint8 *)ptr); break;
case SLA_LOAD_CHECK:
case SLA_LOAD:
case SLA_PTRS:
case SLA_NULL: break;
default: NOT_REACHED();
}
break;
}
case SL_NULL: {
assert(GetVarMemType(sld.conv) == SLE_VAR_NULL);
switch (_sl.action) {
case SLA_LOAD_CHECK:
case SLA_LOAD: SlSkipBytes(SlCalcConvFileLen(sld.conv) * sld.length); break;
case SLA_SAVE: for (int i = 0; i < SlCalcConvFileLen(sld.conv) * sld.length; i++) SlWriteByte(0); break;
case SLA_PTRS:
case SLA_NULL: break;
default: NOT_REACHED();
}
break;
}
case SL_STRUCT:
case SL_STRUCTLIST:
switch (_sl.action) {
case SLA_SAVE: {
if (sld.cmd == SL_STRUCT) {
/* Store in the savegame if this struct was written or not. */
SlSetStructListLength(SlCalcObjMemberLength(object, sld) > SlGetArrayLength(1) ? 1 : 0);
}
sld.handler->Save(object);
break;
}
case SLA_LOAD_CHECK: {
if (sld.cmd == SL_STRUCT && !IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) {
SlGetStructListLength(1);
}
sld.handler->LoadCheck(object);
break;
}
case SLA_LOAD: {
if (sld.cmd == SL_STRUCT && !IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) {
SlGetStructListLength(1);
}
sld.handler->Load(object);
break;
}
case SLA_PTRS:
sld.handler->FixPointers(object);
break;
case SLA_NULL: break;
default: NOT_REACHED();
}
break;
default: NOT_REACHED();
}
return true;
}
/**
* Set the length of this list.
* @param The length of the list.
*/
void SlSetStructListLength(size_t length)
{
/* Automatically calculate the length? */
if (_sl.need_length != NL_NONE) {
SlSetLength(SlGetArrayLength(length));
if (_sl.need_length == NL_CALCLENGTH) return;
}
SlWriteArrayLength(length);
}
/**
* Get the length of this list; if it exceeds the limit, error out.
* @param limit The maximum size the list can be.
* @return The length of the list.
*/
size_t SlGetStructListLength(size_t limit)
{
size_t length = SlReadArrayLength();
if (length > limit) SlErrorCorrupt("List exceeds storage size");
return length;
}
/**
* Main SaveLoad function.
* @param object The object that is being saved or loaded.
* @param slt The SaveLoad table with objects to save/load.
*/
void SlObject(void *object, const SaveLoadTable &slt)
{
/* Automatically calculate the length? */
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcObjLength(object, slt));
if (_sl.need_length == NL_CALCLENGTH) return;
}
for (auto &sld : slt) {
SlObjectMember(object, sld);
}
}
/**
* Handler that is assigned when there is a struct read in the savegame which
* is not known to the code. This means we are going to skip it.
*/
class SlSkipHandler : public SaveLoadHandler {
void Save(void *object) const override
{
NOT_REACHED();
}
void Load(void *object) const override
{
size_t length = SlGetStructListLength(UINT32_MAX);
for (; length > 0; length--) {
SlObject(object, this->GetLoadDescription());
}
}
void LoadCheck(void *object) const override
{
this->Load(object);
}
virtual SaveLoadTable GetDescription() const override
{
return {};
}
virtual SaveLoadCompatTable GetCompatDescription() const override
{
NOT_REACHED();
}
};
/**
* Save or Load a table header.
* @note a table-header can never contain more than 65535 fields.
* @param slt The SaveLoad table with objects to save/load.
* @return When loading, the ordered SaveLoad array to use; otherwise an empty list.
*/
std::vector<SaveLoad> SlTableHeader(const SaveLoadTable &slt)
{
/* You can only use SlTableHeader if you are a CH_TABLE. */
assert(_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE);
switch (_sl.action) {
case SLA_LOAD_CHECK:
case SLA_LOAD: {
std::vector<SaveLoad> saveloads;
/* Build a key lookup mapping based on the available fields. */
std::map<std::string, const SaveLoad *> key_lookup;
for (auto &sld : slt) {
if (!SlIsObjectValidInSavegame(sld)) continue;
/* Check that there is only one active SaveLoad for a given name. */
assert(key_lookup.find(sld.name) == key_lookup.end());
key_lookup[sld.name] = &sld;
}
while (true) {
uint8 type;
SlSaveLoadConv(&type, SLE_UINT8);
if (type == SLE_FILE_END) break;
std::string key;
SlStdString(&key, SLE_STR);
auto sld_it = key_lookup.find(key);
if (sld_it == key_lookup.end()) {
/* SLA_LOADCHECK triggers this debug statement a lot and is perfectly normal. */
Debug(sl, _sl.action == SLA_LOAD ? 2 : 6, "Field '{}' of type 0x{:02x} not found, skipping", key, type);
std::shared_ptr<SaveLoadHandler> handler = nullptr;
SaveLoadType slt;
switch (type & SLE_FILE_TYPE_MASK) {
case SLE_FILE_STRING:
/* Strings are always marked with SLE_FILE_HAS_LENGTH_FIELD, as they are a list of chars. */
slt = SL_STR;
break;
case SLE_FILE_STRUCT:
/* Structs are always marked with SLE_FILE_HAS_LENGTH_FIELD as SL_STRUCT is seen as a list of 0/1 in length. */
slt = SL_STRUCTLIST;
handler = std::make_shared<SlSkipHandler>();
break;
default:
slt = (type & SLE_FILE_HAS_LENGTH_FIELD) ? SL_ARR : SL_VAR;
break;
}
/* We don't know this field, so read to nothing. */
saveloads.push_back({key, slt, ((VarType)type & SLE_FILE_TYPE_MASK) | SLE_VAR_NULL, 1, SL_MIN_VERSION, SL_MAX_VERSION, 0, nullptr, 0, handler});
continue;
}
/* Validate the type of the field. If it is changed, the
* savegame should have been bumped so we know how to do the
* conversion. If this error triggers, that clearly didn't
* happen and this is a friendly poke to the developer to bump
* the savegame version and add conversion code. */
uint8 correct_type = GetSavegameFileType(*sld_it->second);
if (correct_type != type) {
Debug(sl, 1, "Field type for '{}' was expected to be 0x{:02x} but 0x{:02x} was found", key, correct_type, type);
SlErrorCorrupt("Field type is different than expected");
}
saveloads.push_back(*sld_it->second);
}
for (auto &sld : saveloads) {
if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) {
sld.handler->load_description = SlTableHeader(sld.handler->GetDescription());
}
}
return saveloads;
}
case SLA_SAVE: {
/* Automatically calculate the length? */
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcTableHeader(slt));
if (_sl.need_length == NL_CALCLENGTH) break;
}
for (auto &sld : slt) {
if (!SlIsObjectValidInSavegame(sld)) continue;
/* Make sure we are not storing empty keys. */
assert(!sld.name.empty());
uint8 type = GetSavegameFileType(sld);
assert(type != SLE_FILE_END);
SlSaveLoadConv(&type, SLE_UINT8);
SlStdString(const_cast<std::string *>(&sld.name), SLE_STR);
}
/* Add an end-of-header marker. */
uint8 type = SLE_FILE_END;
SlSaveLoadConv(&type, SLE_UINT8);
/* After the table, write down any sub-tables we might have. */
for (auto &sld : slt) {
if (!SlIsObjectValidInSavegame(sld)) continue;
if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) {
/* SlCalcTableHeader already looks in sub-lists, so avoid the length being added twice. */
NeedLength old_need_length = _sl.need_length;
_sl.need_length = NL_NONE;
SlTableHeader(sld.handler->GetDescription());
_sl.need_length = old_need_length;
}
}
break;
}
default: NOT_REACHED();
}
return std::vector<SaveLoad>();
}
/**
* Load a table header in a savegame compatible way. If the savegame was made
* before table headers were added, it will fall back to the
* SaveLoadCompatTable for the order of fields while loading.
*
* @note You only have to call this function if the chunk existed as a
* non-table type before converting it to a table. New chunks created as
* table can call SlTableHeader() directly.
*
* @param slt The SaveLoad table with objects to save/load.
* @param slct The SaveLoadCompat table the original order of the fields.
* @return When loading, the ordered SaveLoad array to use; otherwise an empty list.
*/
std::vector<SaveLoad> SlCompatTableHeader(const SaveLoadTable &slt, const SaveLoadCompatTable &slct)
{
assert(_sl.action == SLA_LOAD || _sl.action == SLA_LOAD_CHECK);
/* CH_TABLE / CH_SPARSE_TABLE always have a header. */
if (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE) return SlTableHeader(slt);
std::vector<SaveLoad> saveloads;
/* Build a key lookup mapping based on the available fields. */
std::map<std::string, std::vector<const SaveLoad *>> key_lookup;
for (auto &sld : slt) {
/* All entries should have a name; otherwise the entry should just be removed. */
assert(!sld.name.empty());
key_lookup[sld.name].push_back(&sld);
}
for (auto &slc : slct) {
if (slc.name.empty()) {
/* In old savegames there can be data we no longer care for. We
* skip this by simply reading the amount of bytes indicated and
* send those to /dev/null. */
saveloads.push_back({"", SL_NULL, SLE_FILE_U8 | SLE_VAR_NULL, slc.length, slc.version_from, slc.version_to, 0, nullptr, 0, nullptr});
} else {
auto sld_it = key_lookup.find(slc.name);
/* If this branch triggers, it means that an entry in the
* SaveLoadCompat list is not mentioned in the SaveLoad list. Did
* you rename a field in one and not in the other? */
if (sld_it == key_lookup.end()) {
/* This isn't an assert, as that leaves no information what
* field was to blame. This way at least we have breadcrumbs. */
Debug(sl, 0, "internal error: saveload compatibility field '{}' not found", slc.name);
SlErrorCorrupt("Internal error with savegame compatibility");
}
for (auto &sld : sld_it->second) {
saveloads.push_back(*sld);
}
}
}
for (auto &sld : saveloads) {
if (!SlIsObjectValidInSavegame(sld)) continue;
if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) {
sld.handler->load_description = SlCompatTableHeader(sld.handler->GetDescription(), sld.handler->GetCompatDescription());
}
}
return saveloads;
}
/**
* Save or Load (a list of) global variables.
* @param slt The SaveLoad table with objects to save/load.
*/
void SlGlobList(const SaveLoadTable &slt)
{
SlObject(nullptr, slt);
}
/**
* Do something of which I have no idea what it is :P
* @param proc The callback procedure that is called
* @param arg The variable that will be used for the callback procedure
*/
void SlAutolength(AutolengthProc *proc, void *arg)
{
size_t offs;
assert(_sl.action == SLA_SAVE);
/* Tell it to calculate the length */
_sl.need_length = NL_CALCLENGTH;
_sl.obj_len = 0;
proc(arg);
/* Setup length */
_sl.need_length = NL_WANTLENGTH;
SlSetLength(_sl.obj_len);
offs = _sl.dumper->GetSize() + _sl.obj_len;
/* And write the stuff */
proc(arg);
if (offs != _sl.dumper->GetSize()) SlErrorCorrupt("Invalid chunk size");
}
void ChunkHandler::LoadCheck(size_t len) const
{
switch (_sl.block_mode) {
case CH_TABLE:
case CH_SPARSE_TABLE:
SlTableHeader({});
FALLTHROUGH;
case CH_ARRAY:
case CH_SPARSE_ARRAY:
SlSkipArray();
break;
case CH_RIFF:
SlSkipBytes(len);
break;
default:
NOT_REACHED();
}
}
/**
* Load a chunk of data (eg vehicles, stations, etc.)
* @param ch The chunkhandler that will be used for the operation
*/
static void SlLoadChunk(const ChunkHandler &ch)
{
byte m = SlReadByte();
size_t len;
size_t endoffs;
_sl.block_mode = m & CH_TYPE_MASK;
_sl.obj_len = 0;
_sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE);
/* The header should always be at the start. Read the length; the
* Load() should as first action process the header. */
if (_sl.expect_table_header) {
SlIterateArray();
}
switch (_sl.block_mode) {
case CH_TABLE:
case CH_ARRAY:
_sl.array_index = 0;
ch.Load();
if (_next_offs != 0) SlErrorCorrupt("Invalid array length");
break;
case CH_SPARSE_TABLE:
case CH_SPARSE_ARRAY:
ch.Load();
if (_next_offs != 0) SlErrorCorrupt("Invalid array length");
break;
case CH_RIFF:
/* Read length */
len = (SlReadByte() << 16) | ((m >> 4) << 24);
len += SlReadUint16();
_sl.obj_len = len;
endoffs = _sl.reader->GetSize() + len;
ch.Load();
if (_sl.reader->GetSize() != endoffs) SlErrorCorrupt("Invalid chunk size");
break;
default:
SlErrorCorrupt("Invalid chunk type");
break;
}
if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header");
}
/**
* Load a chunk of data for checking savegames.
* If the chunkhandler is nullptr, the chunk is skipped.
* @param ch The chunkhandler that will be used for the operation
*/
static void SlLoadCheckChunk(const ChunkHandler &ch)
{
byte m = SlReadByte();
size_t len;
size_t endoffs;
_sl.block_mode = m & CH_TYPE_MASK;
_sl.obj_len = 0;
_sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE);
/* The header should always be at the start. Read the length; the
* LoadCheck() should as first action process the header. */
if (_sl.expect_table_header) {
SlIterateArray();
}
switch (_sl.block_mode) {
case CH_TABLE:
case CH_ARRAY:
_sl.array_index = 0;
ch.LoadCheck();
break;
case CH_SPARSE_TABLE:
case CH_SPARSE_ARRAY:
ch.LoadCheck();
break;
case CH_RIFF:
/* Read length */
len = (SlReadByte() << 16) | ((m >> 4) << 24);
len += SlReadUint16();
_sl.obj_len = len;
endoffs = _sl.reader->GetSize() + len;
ch.LoadCheck(len);
if (_sl.reader->GetSize() != endoffs) SlErrorCorrupt("Invalid chunk size");
break;
default:
SlErrorCorrupt("Invalid chunk type");
break;
}
if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header");
}
/**
* Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is
* prefixed by an ID identifying it, followed by data, and terminator where appropriate
* @param ch The chunkhandler that will be used for the operation
*/
static void SlSaveChunk(const ChunkHandler &ch)
{
if (ch.type == CH_READONLY) return;
SlWriteUint32(ch.id);
Debug(sl, 2, "Saving chunk {:c}{:c}{:c}{:c}", ch.id >> 24, ch.id >> 16, ch.id >> 8, ch.id);
_sl.block_mode = ch.type;
_sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE);
_sl.need_length = (_sl.expect_table_header || _sl.block_mode == CH_RIFF) ? NL_WANTLENGTH : NL_NONE;
switch (_sl.block_mode) {
case CH_RIFF:
ch.Save();
break;
case CH_TABLE:
case CH_ARRAY:
_sl.last_array_index = 0;
SlWriteByte(_sl.block_mode);
ch.Save();
SlWriteArrayLength(0); // Terminate arrays
break;
case CH_SPARSE_TABLE:
case CH_SPARSE_ARRAY:
SlWriteByte(_sl.block_mode);
ch.Save();
SlWriteArrayLength(0); // Terminate arrays
break;
default: NOT_REACHED();
}
if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header");
}
/** Save all chunks */
static void SlSaveChunks()
{
for (auto &ch : ChunkHandlers()) {
SlSaveChunk(ch);
}
/* Terminator */
SlWriteUint32(0);
}
/**
* Find the ChunkHandler that will be used for processing the found
* chunk in the savegame or in memory
* @param id the chunk in question
* @return returns the appropriate chunkhandler
*/
static const ChunkHandler *SlFindChunkHandler(uint32 id)
{
for (const ChunkHandler &ch : ChunkHandlers()) if (ch.id == id) return &ch;
return nullptr;
}
/** Load all chunks */
static void SlLoadChunks()
{
uint32 id;
const ChunkHandler *ch;
for (id = SlReadUint32(); id != 0; id = SlReadUint32()) {
Debug(sl, 2, "Loading chunk {:c}{:c}{:c}{:c}", id >> 24, id >> 16, id >> 8, id);
ch = SlFindChunkHandler(id);
if (ch == nullptr) SlErrorCorrupt("Unknown chunk type");
SlLoadChunk(*ch);
}
}
/** Load all chunks for savegame checking */
static void SlLoadCheckChunks()
{
uint32 id;
const ChunkHandler *ch;
for (id = SlReadUint32(); id != 0; id = SlReadUint32()) {
Debug(sl, 2, "Loading chunk {:c}{:c}{:c}{:c}", id >> 24, id >> 16, id >> 8, id);
ch = SlFindChunkHandler(id);
if (ch == nullptr) SlErrorCorrupt("Unknown chunk type");
SlLoadCheckChunk(*ch);
}
}
/** Fix all pointers (convert index -> pointer) */
static void SlFixPointers()
{
_sl.action = SLA_PTRS;
for (const ChunkHandler &ch : ChunkHandlers()) {
Debug(sl, 3, "Fixing pointers for {:c}{:c}{:c}{:c}", ch.id >> 24, ch.id >> 16, ch.id >> 8, ch.id);
ch.FixPointers();
}
assert(_sl.action == SLA_PTRS);
}
/** Yes, simply reading from a file. */
struct FileReader : LoadFilter {
FILE *file; ///< The file to read from.
long begin; ///< The begin of the file.
/**
* Create the file reader, so it reads from a specific file.
* @param file The file to read from.
*/
FileReader(FILE *file) : LoadFilter(nullptr), file(file), begin(ftell(file))
{
}
/** Make sure everything is cleaned up. */
~FileReader()
{
if (this->file != nullptr) fclose(this->file);
this->file = nullptr;
/* Make sure we don't double free. */
_sl.sf = nullptr;
}
size_t Read(byte *buf, size_t size) override
{
/* We're in the process of shutting down, i.e. in "failure" mode. */
if (this->file == nullptr) return 0;
return fread(buf, 1, size, this->file);
}
void Reset() override
{
clearerr(this->file);
if (fseek(this->file, this->begin, SEEK_SET)) {
Debug(sl, 1, "Could not reset the file reading");
}
}
};
/** Yes, simply writing to a file. */
struct FileWriter : SaveFilter {
FILE *file; ///< The file to write to.
/**
* Create the file writer, so it writes to a specific file.
* @param file The file to write to.
*/
FileWriter(FILE *file) : SaveFilter(nullptr), file(file)
{
}
/** Make sure everything is cleaned up. */
~FileWriter()
{
this->Finish();
/* Make sure we don't double free. */
_sl.sf = nullptr;
}
void Write(byte *buf, size_t size) override
{
/* We're in the process of shutting down, i.e. in "failure" mode. */
if (this->file == nullptr) return;
if (fwrite(buf, 1, size, this->file) != size) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_WRITEABLE);
}
void Finish() override
{
if (this->file != nullptr) fclose(this->file);
this->file = nullptr;
}
};
/*******************************************
********** START OF LZO CODE **************
*******************************************/
#ifdef WITH_LZO
#include <lzo/lzo1x.h>
/** Buffer size for the LZO compressor */
static const uint LZO_BUFFER_SIZE = 8192;
/** Filter using LZO compression. */
struct LZOLoadFilter : LoadFilter {
/**
* Initialise this filter.
* @param chain The next filter in this chain.
*/
LZOLoadFilter(LoadFilter *chain) : LoadFilter(chain)
{
if (lzo_init() != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor");
}
size_t Read(byte *buf, size_t ssize) override
{
assert(ssize >= LZO_BUFFER_SIZE);
/* Buffer size is from the LZO docs plus the chunk header size. */
byte out[LZO_BUFFER_SIZE + LZO_BUFFER_SIZE / 16 + 64 + 3 + sizeof(uint32) * 2];
uint32 tmp[2];
uint32 size;
lzo_uint len = ssize;
/* Read header*/
if (this->chain->Read((byte*)tmp, sizeof(tmp)) != sizeof(tmp)) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE, "File read failed");
/* Check if size is bad */
((uint32*)out)[0] = size = tmp[1];
if (_sl_version != SL_MIN_VERSION) {
tmp[0] = TO_BE32(tmp[0]);
size = TO_BE32(size);
}
if (size >= sizeof(out)) SlErrorCorrupt("Inconsistent size");
/* Read block */
if (this->chain->Read(out + sizeof(uint32), size) != size) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE);
/* Verify checksum */
if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlErrorCorrupt("Bad checksum");
/* Decompress */
int ret = lzo1x_decompress_safe(out + sizeof(uint32) * 1, size, buf, &len, nullptr);
if (ret != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE);
return len;
}
};
/** Filter using LZO compression. */
struct LZOSaveFilter : SaveFilter {
/**
* Initialise this filter.
* @param chain The next filter in this chain.
* @param compression_level The requested level of compression.
*/
LZOSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain)
{
if (lzo_init() != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor");
}
void Write(byte *buf, size_t size) override
{
const lzo_bytep in = buf;
/* Buffer size is from the LZO docs plus the chunk header size. */
byte out[LZO_BUFFER_SIZE + LZO_BUFFER_SIZE / 16 + 64 + 3 + sizeof(uint32) * 2];
byte wrkmem[LZO1X_1_MEM_COMPRESS];
lzo_uint outlen;
do {
/* Compress up to LZO_BUFFER_SIZE bytes at once. */
lzo_uint len = size > LZO_BUFFER_SIZE ? LZO_BUFFER_SIZE : (lzo_uint)size;
lzo1x_1_compress(in, len, out + sizeof(uint32) * 2, &outlen, wrkmem);
((uint32*)out)[1] = TO_BE32((uint32)outlen);
((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32)));
this->chain->Write(out, outlen + sizeof(uint32) * 2);
/* Move to next data chunk. */
size -= len;
in += len;
} while (size > 0);
}
};
#endif /* WITH_LZO */
/*********************************************
******** START OF NOCOMP CODE (uncompressed)*
*********************************************/
/** Filter without any compression. */
struct NoCompLoadFilter : LoadFilter {
/**
* Initialise this filter.
* @param chain The next filter in this chain.
*/
NoCompLoadFilter(LoadFilter *chain) : LoadFilter(chain)
{
}
size_t Read(byte *buf, size_t size) override
{
return this->chain->Read(buf, size);
}
};
/** Filter without any compression. */
struct NoCompSaveFilter : SaveFilter {
/**
* Initialise this filter.
* @param chain The next filter in this chain.
* @param compression_level The requested level of compression.
*/
NoCompSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain)
{
}
void Write(byte *buf, size_t size) override
{
this->chain->Write(buf, size);
}
};
/********************************************
********** START OF ZLIB CODE **************
********************************************/
#if defined(WITH_ZLIB)
#include <zlib.h>
/** Filter using Zlib compression. */
struct ZlibLoadFilter : LoadFilter {
z_stream z; ///< Stream state we are reading from.
byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file.
/**
* Initialise this filter.
* @param chain The next filter in this chain.
*/
ZlibLoadFilter(LoadFilter *chain) : LoadFilter(chain)
{
memset(&this->z, 0, sizeof(this->z));
if (inflateInit(&this->z) != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor");
}
/** Clean everything up. */
~ZlibLoadFilter()
{
inflateEnd(&this->z);
}
size_t Read(byte *buf, size_t size) override
{
this->z.next_out = buf;
this->z.avail_out = (uint)size;
do {
/* read more bytes from the file? */
if (this->z.avail_in == 0) {
this->z.next_in = this->fread_buf;
this->z.avail_in = (uint)this->chain->Read(this->fread_buf, sizeof(this->fread_buf));
}
/* inflate the data */
int r = inflate(&this->z, 0);
if (r == Z_STREAM_END) break;
if (r != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "inflate() failed");
} while (this->z.avail_out != 0);
return size - this->z.avail_out;
}
};
/** Filter using Zlib compression. */
struct ZlibSaveFilter : SaveFilter {
z_stream z; ///< Stream state we are writing to.
/**
* Initialise this filter.
* @param chain The next filter in this chain.
* @param compression_level The requested level of compression.
*/
ZlibSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain)
{
memset(&this->z, 0, sizeof(this->z));
if (deflateInit(&this->z, compression_level) != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor");
}
/** Clean up what we allocated. */
~ZlibSaveFilter()
{
deflateEnd(&this->z);
}
/**
* Helper loop for writing the data.
* @param p The bytes to write.
* @param len Amount of bytes to write.
* @param mode Mode for deflate.
*/
void WriteLoop(byte *p, size_t len, int mode)
{
byte buf[MEMORY_CHUNK_SIZE]; // output buffer
uint n;
this->z.next_in = p;
this->z.avail_in = (uInt)len;
do {
this->z.next_out = buf;
this->z.avail_out = sizeof(buf);
/**
* For the poor next soul who sees many valgrind warnings of the
* "Conditional jump or move depends on uninitialised value(s)" kind:
* According to the author of zlib it is not a bug and it won't be fixed.
* http://groups.google.com/group/comp.compression/browse_thread/thread/b154b8def8c2a3ef/cdf9b8729ce17ee2
* [Mark Adler, Feb 24 2004, 'zlib-1.2.1 valgrind warnings' in the newsgroup comp.compression]
*/
int r = deflate(&this->z, mode);
/* bytes were emitted? */
if ((n = sizeof(buf) - this->z.avail_out) != 0) {
this->chain->Write(buf, n);
}
if (r == Z_STREAM_END) break;
if (r != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "zlib returned error code");
} while (this->z.avail_in || !this->z.avail_out);
}
void Write(byte *buf, size_t size) override
{
this->WriteLoop(buf, size, 0);
}
void Finish() override
{
this->WriteLoop(nullptr, 0, Z_FINISH);
this->chain->Finish();
}
};
#endif /* WITH_ZLIB */
/********************************************
********** START OF LZMA CODE **************
********************************************/
#if defined(WITH_LIBLZMA)
#include <lzma.h>
/**
* Have a copy of an initialised LZMA stream. We need this as it's
* impossible to "re"-assign LZMA_STREAM_INIT to a variable in some
* compilers, i.e. LZMA_STREAM_INIT can't be used to set something.
* This var has to be used instead.
*/
static const lzma_stream _lzma_init = LZMA_STREAM_INIT;
/** Filter without any compression. */
struct LZMALoadFilter : LoadFilter {
lzma_stream lzma; ///< Stream state that we are reading from.
byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file.
/**
* Initialise this filter.
* @param chain The next filter in this chain.
*/
LZMALoadFilter(LoadFilter *chain) : LoadFilter(chain), lzma(_lzma_init)
{
/* Allow saves up to 256 MB uncompressed */
if (lzma_auto_decoder(&this->lzma, 1 << 28, 0) != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor");
}
/** Clean everything up. */
~LZMALoadFilter()
{
lzma_end(&this->lzma);
}
size_t Read(byte *buf, size_t size) override
{
this->lzma.next_out = buf;
this->lzma.avail_out = size;
do {
/* read more bytes from the file? */
if (this->lzma.avail_in == 0) {
this->lzma.next_in = this->fread_buf;
this->lzma.avail_in = this->chain->Read(this->fread_buf, sizeof(this->fread_buf));
}
/* inflate the data */
lzma_ret r = lzma_code(&this->lzma, LZMA_RUN);
if (r == LZMA_STREAM_END) break;
if (r != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "liblzma returned error code");
} while (this->lzma.avail_out != 0);
return size - this->lzma.avail_out;
}
};
/** Filter using LZMA compression. */
struct LZMASaveFilter : SaveFilter {
lzma_stream lzma; ///< Stream state that we are writing to.
/**
* Initialise this filter.
* @param chain The next filter in this chain.
* @param compression_level The requested level of compression.
*/
LZMASaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain), lzma(_lzma_init)
{
if (lzma_easy_encoder(&this->lzma, compression_level, LZMA_CHECK_CRC32) != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor");
}
/** Clean up what we allocated. */
~LZMASaveFilter()
{
lzma_end(&this->lzma);
}
/**
* Helper loop for writing the data.
* @param p The bytes to write.
* @param len Amount of bytes to write.
* @param action Action for lzma_code.
*/
void WriteLoop(byte *p, size_t len, lzma_action action)
{
byte buf[MEMORY_CHUNK_SIZE]; // output buffer
size_t n;
this->lzma.next_in = p;
this->lzma.avail_in = len;
do {
this->lzma.next_out = buf;
this->lzma.avail_out = sizeof(buf);
lzma_ret r = lzma_code(&this->lzma, action);
/* bytes were emitted? */
if ((n = sizeof(buf) - this->lzma.avail_out) != 0) {
this->chain->Write(buf, n);
}
if (r == LZMA_STREAM_END) break;
if (r != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "liblzma returned error code");
} while (this->lzma.avail_in || !this->lzma.avail_out);
}
void Write(byte *buf, size_t size) override
{
this->WriteLoop(buf, size, LZMA_RUN);
}
void Finish() override
{
this->WriteLoop(nullptr, 0, LZMA_FINISH);
this->chain->Finish();
}
};
#endif /* WITH_LIBLZMA */
/*******************************************
************* END OF CODE *****************
*******************************************/
/** The format for a reader/writer type of a savegame */
struct SaveLoadFormat {
const char *name; ///< name of the compressor/decompressor (debug-only)
uint32 tag; ///< the 4-letter tag by which it is identified in the savegame
LoadFilter *(*init_load)(LoadFilter *chain); ///< Constructor for the load filter.
SaveFilter *(*init_write)(SaveFilter *chain, byte compression); ///< Constructor for the save filter.
byte min_compression; ///< the minimum compression level of this format
byte default_compression; ///< the default compression level of this format
byte max_compression; ///< the maximum compression level of this format
};
/** The different saveload formats known/understood by OpenTTD. */
static const SaveLoadFormat _saveload_formats[] = {
#if defined(WITH_LZO)
/* Roughly 75% larger than zlib level 6 at only ~7% of the CPU usage. */
{"lzo", TO_BE32X('OTTD'), CreateLoadFilter<LZOLoadFilter>, CreateSaveFilter<LZOSaveFilter>, 0, 0, 0},
#else
{"lzo", TO_BE32X('OTTD'), nullptr, nullptr, 0, 0, 0},
#endif
/* Roughly 5 times larger at only 1% of the CPU usage over zlib level 6. */
{"none", TO_BE32X('OTTN'), CreateLoadFilter<NoCompLoadFilter>, CreateSaveFilter<NoCompSaveFilter>, 0, 0, 0},
#if defined(WITH_ZLIB)
/* After level 6 the speed reduction is significant (1.5x to 2.5x slower per level), but the reduction in filesize is
* fairly insignificant (~1% for each step). Lower levels become ~5-10% bigger by each level than level 6 while level
* 1 is "only" 3 times as fast. Level 0 results in uncompressed savegames at about 8 times the cost of "none". */
{"zlib", TO_BE32X('OTTZ'), CreateLoadFilter<ZlibLoadFilter>, CreateSaveFilter<ZlibSaveFilter>, 0, 6, 9},
#else
{"zlib", TO_BE32X('OTTZ'), nullptr, nullptr, 0, 0, 0},
#endif
#if defined(WITH_LIBLZMA)
/* Level 2 compression is speed wise as fast as zlib level 6 compression (old default), but results in ~10% smaller saves.
* Higher compression levels are possible, and might improve savegame size by up to 25%, but are also up to 10 times slower.
* The next significant reduction in file size is at level 4, but that is already 4 times slower. Level 3 is primarily 50%
* slower while not improving the filesize, while level 0 and 1 are faster, but don't reduce savegame size much.
* It's OTTX and not e.g. OTTL because liblzma is part of xz-utils and .tar.xz is preferred over .tar.lzma. */
{"lzma", TO_BE32X('OTTX'), CreateLoadFilter<LZMALoadFilter>, CreateSaveFilter<LZMASaveFilter>, 0, 2, 9},
#else
{"lzma", TO_BE32X('OTTX'), nullptr, nullptr, 0, 0, 0},
#endif
};
/**
* Return the savegameformat of the game. Whether it was created with ZLIB compression
* uncompressed, or another type
* @param full_name Name of the savegame format. If empty it picks the first available one
* @param compression_level Output for telling what compression level we want.
* @return Pointer to SaveLoadFormat struct giving all characteristics of this type of savegame
*/
static const SaveLoadFormat *GetSavegameFormat(const std::string &full_name, byte *compression_level)
{
const SaveLoadFormat *def = lastof(_saveload_formats);
/* find default savegame format, the highest one with which files can be written */
while (!def->init_write) def--;
if (!full_name.empty()) {
/* Get the ":..." of the compression level out of the way */
size_t separator = full_name.find(':');
bool has_comp_level = separator != std::string::npos;
const std::string name(full_name, 0, has_comp_level ? separator : full_name.size());
for (const SaveLoadFormat *slf = &_saveload_formats[0]; slf != endof(_saveload_formats); slf++) {
if (slf->init_write != nullptr && name.compare(slf->name) == 0) {
*compression_level = slf->default_compression;
if (has_comp_level) {
const std::string complevel(full_name, separator + 1);
/* Get the level and determine whether all went fine. */
size_t processed;
long level = std::stol(complevel, &processed, 10);
if (processed == 0 || level != Clamp(level, slf->min_compression, slf->max_compression)) {
SetDParamStr(0, complevel);
ShowErrorMessage(STR_CONFIG_ERROR, STR_CONFIG_ERROR_INVALID_SAVEGAME_COMPRESSION_LEVEL, WL_CRITICAL);
} else {
*compression_level = level;
}
}
return slf;
}
}
SetDParamStr(0, name);
SetDParamStr(1, def->name);
ShowErrorMessage(STR_CONFIG_ERROR, STR_CONFIG_ERROR_INVALID_SAVEGAME_COMPRESSION_ALGORITHM, WL_CRITICAL);
}
*compression_level = def->default_compression;
return def;
}
/* actual loader/saver function */
void InitializeGame(uint size_x, uint size_y, bool reset_date, bool reset_settings);
extern bool AfterLoadGame();
extern bool LoadOldSaveGame(const std::string &file);
/**
* Clear temporary data that is passed between various saveload phases.
*/
static void ResetSaveloadData()
{
ResetTempEngineData();
ResetLabelMaps();
ResetOldWaypoints();
}
/**
* Clear/free saveload state.
*/
static inline void ClearSaveLoadState()
{
delete _sl.dumper;
_sl.dumper = nullptr;
delete _sl.sf;
_sl.sf = nullptr;
delete _sl.reader;
_sl.reader = nullptr;
delete _sl.lf;
_sl.lf = nullptr;
}
/**
* Update the gui accordingly when starting saving
* and set locks on saveload. Also turn off fast-forward cause with that
* saving takes Aaaaages
*/
static void SaveFileStart()
{
_sl.game_speed = _game_speed;
_game_speed = 100;
SetMouseCursorBusy(true);
InvalidateWindowData(WC_STATUS_BAR, 0, SBI_SAVELOAD_START);
_sl.saveinprogress = true;
}
/** Update the gui accordingly when saving is done and release locks on saveload. */
static void SaveFileDone()
{
if (_game_mode != GM_MENU) _game_speed = _sl.game_speed;
SetMouseCursorBusy(false);
InvalidateWindowData(WC_STATUS_BAR, 0, SBI_SAVELOAD_FINISH);
_sl.saveinprogress = false;
#ifdef __EMSCRIPTEN__
EM_ASM(if (window["openttd_syncfs"]) openttd_syncfs());
#endif
}
/** Set the error message from outside of the actual loading/saving of the game (AfterLoadGame and friends) */
void SetSaveLoadError(StringID str)
{
_sl.error_str = str;
}
/** Get the string representation of the error message */
const char *GetSaveLoadErrorString()
{
SetDParam(0, _sl.error_str);
SetDParamStr(1, _sl.extra_msg);
static char err_str[512];
GetString(err_str, _sl.action == SLA_SAVE ? STR_ERROR_GAME_SAVE_FAILED : STR_ERROR_GAME_LOAD_FAILED, lastof(err_str));
return err_str;
}
/** Show a gui message when saving has failed */
static void SaveFileError()
{
SetDParamStr(0, GetSaveLoadErrorString());
ShowErrorMessage(STR_JUST_RAW_STRING, INVALID_STRING_ID, WL_ERROR);
SaveFileDone();
}
/**
* We have written the whole game into memory, _memory_savegame, now find
* and appropriate compressor and start writing to file.
*/
static SaveOrLoadResult SaveFileToDisk(bool threaded)
{
try {
byte compression;
const SaveLoadFormat *fmt = GetSavegameFormat(_savegame_format, &compression);
/* We have written our stuff to memory, now write it to file! */
uint32 hdr[2] = { fmt->tag, TO_BE32(SAVEGAME_VERSION << 16) };
_sl.sf->Write((byte*)hdr, sizeof(hdr));
_sl.sf = fmt->init_write(_sl.sf, compression);
_sl.dumper->Flush(_sl.sf);
ClearSaveLoadState();
if (threaded) SetAsyncSaveFinish(SaveFileDone);
return SL_OK;
} catch (...) {
ClearSaveLoadState();
AsyncSaveFinishProc asfp = SaveFileDone;
/* We don't want to shout when saving is just
* cancelled due to a client disconnecting. */
if (_sl.error_str != STR_NETWORK_ERROR_LOSTCONNECTION) {
/* Skip the "colour" character */
Debug(sl, 0, "{}", GetSaveLoadErrorString() + 3);
asfp = SaveFileError;
}
if (threaded) {
SetAsyncSaveFinish(asfp);
} else {
asfp();
}
return SL_ERROR;
}
}
void WaitTillSaved()
{
if (!_save_thread.joinable()) return;
_save_thread.join();
/* Make sure every other state is handled properly as well. */
ProcessAsyncSaveFinish();
}
/**
* Actually perform the saving of the savegame.
* General tactics is to first save the game to memory, then write it to file
* using the writer, either in threaded mode if possible, or single-threaded.
* @param writer The filter to write the savegame to.
* @param threaded Whether to try to perform the saving asynchronously.
* @return Return the result of the action. #SL_OK or #SL_ERROR
*/
static SaveOrLoadResult DoSave(SaveFilter *writer, bool threaded)
{
assert(!_sl.saveinprogress);
_sl.dumper = new MemoryDumper();
_sl.sf = writer;
_sl_version = SAVEGAME_VERSION;
SaveViewportBeforeSaveGame();
SlSaveChunks();
SaveFileStart();
if (!threaded || !StartNewThread(&_save_thread, "ottd:savegame", &SaveFileToDisk, true)) {
if (threaded) Debug(sl, 1, "Cannot create savegame thread, reverting to single-threaded mode...");
SaveOrLoadResult result = SaveFileToDisk(false);
SaveFileDone();
return result;
}
return SL_OK;
}
/**
* Save the game using a (writer) filter.
* @param writer The filter to write the savegame to.
* @param threaded Whether to try to perform the saving asynchronously.
* @return Return the result of the action. #SL_OK or #SL_ERROR
*/
SaveOrLoadResult SaveWithFilter(SaveFilter *writer, bool threaded)
{
try {
_sl.action = SLA_SAVE;
return DoSave(writer, threaded);
} catch (...) {
ClearSaveLoadState();
return SL_ERROR;
}
}
/**
* Actually perform the loading of a "non-old" savegame.
* @param reader The filter to read the savegame from.
* @param load_check Whether to perform the checking ("preview") or actually load the game.
* @return Return the result of the action. #SL_OK or #SL_REINIT ("unload" the game)
*/
static SaveOrLoadResult DoLoad(LoadFilter *reader, bool load_check)
{
_sl.lf = reader;
if (load_check) {
/* Clear previous check data */
_load_check_data.Clear();
/* Mark SL_LOAD_CHECK as supported for this savegame. */
_load_check_data.checkable = true;
}
uint32 hdr[2];
if (_sl.lf->Read((byte*)hdr, sizeof(hdr)) != sizeof(hdr)) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE);
/* see if we have any loader for this type. */
const SaveLoadFormat *fmt = _saveload_formats;
for (;;) {
/* No loader found, treat as version 0 and use LZO format */
if (fmt == endof(_saveload_formats)) {
Debug(sl, 0, "Unknown savegame type, trying to load it as the buggy format");
_sl.lf->Reset();
_sl_version = SL_MIN_VERSION;
_sl_minor_version = 0;
/* Try to find the LZO savegame format; it uses 'OTTD' as tag. */
fmt = _saveload_formats;
for (;;) {
if (fmt == endof(_saveload_formats)) {
/* Who removed LZO support? */
NOT_REACHED();
}
if (fmt->tag == TO_BE32X('OTTD')) break;
fmt++;
}
break;
}
if (fmt->tag == hdr[0]) {
/* check version number */
_sl_version = (SaveLoadVersion)(TO_BE32(hdr[1]) >> 16);
/* Minor is not used anymore from version 18.0, but it is still needed
* in versions before that (4 cases) which can't be removed easy.
* Therefore it is loaded, but never saved (or, it saves a 0 in any scenario). */
_sl_minor_version = (TO_BE32(hdr[1]) >> 8) & 0xFF;
Debug(sl, 1, "Loading savegame version {}", _sl_version);
/* Is the version higher than the current? */
if (_sl_version > SAVEGAME_VERSION) SlError(STR_GAME_SAVELOAD_ERROR_TOO_NEW_SAVEGAME);
if (_sl_version >= SLV_START_PATCHPACKS && _sl_version <= SLV_END_PATCHPACKS) SlError(STR_GAME_SAVELOAD_ERROR_PATCHPACK);
break;
}
fmt++;
}
/* loader for this savegame type is not implemented? */
if (fmt->init_load == nullptr) {
char err_str[64];
seprintf(err_str, lastof(err_str), "Loader for '%s' is not available.", fmt->name);
SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, err_str);
}
_sl.lf = fmt->init_load(_sl.lf);
_sl.reader = new ReadBuffer(_sl.lf);
_next_offs = 0;
if (!load_check) {
ResetSaveloadData();
/* Old maps were hardcoded to 256x256 and thus did not contain
* any mapsize information. Pre-initialize to 256x256 to not to
* confuse old games */
InitializeGame(256, 256, true, true);
GamelogReset();
if (IsSavegameVersionBefore(SLV_4)) {
/*
* NewGRFs were introduced between 0.3,4 and 0.3.5, which both
* shared savegame version 4. Anything before that 'obviously'
* does not have any NewGRFs. Between the introduction and
* savegame version 41 (just before 0.5) the NewGRF settings
* were not stored in the savegame and they were loaded by
* using the settings from the main menu.
* So, to recap:
* - savegame version < 4: do not load any NewGRFs.
* - savegame version >= 41: load NewGRFs from savegame, which is
* already done at this stage by
* overwriting the main menu settings.
* - other savegame versions: use main menu settings.
*
* This means that users *can* crash savegame version 4..40
* savegames if they set incompatible NewGRFs in the main menu,
* but can't crash anymore for savegame version < 4 savegames.
*
* Note: this is done here because AfterLoadGame is also called
* for TTO/TTD/TTDP savegames which have their own NewGRF logic.
*/
ClearGRFConfigList(&_grfconfig);
}
}
if (load_check) {
/* Load chunks into _load_check_data.
* No pools are loaded. References are not possible, and thus do not need resolving. */
SlLoadCheckChunks();
} else {
/* Load chunks and resolve references */
SlLoadChunks();
SlFixPointers();
}
ClearSaveLoadState();
_savegame_type = SGT_OTTD;
if (load_check) {
/* The only part from AfterLoadGame() we need */
_load_check_data.grf_compatibility = IsGoodGRFConfigList(_load_check_data.grfconfig);
} else {
GamelogStartAction(GLAT_LOAD);
/* After loading fix up savegame for any internal changes that
* might have occurred since then. If it fails, load back the old game. */
if (!AfterLoadGame()) {
GamelogStopAction();
return SL_REINIT;
}
GamelogStopAction();
}
return SL_OK;
}
/**
* Load the game using a (reader) filter.
* @param reader The filter to read the savegame from.
* @return Return the result of the action. #SL_OK or #SL_REINIT ("unload" the game)
*/
SaveOrLoadResult LoadWithFilter(LoadFilter *reader)
{
try {
_sl.action = SLA_LOAD;
return DoLoad(reader, false);
} catch (...) {
ClearSaveLoadState();
return SL_REINIT;
}
}
/**
* Main Save or Load function where the high-level saveload functions are
* handled. It opens the savegame, selects format and checks versions
* @param filename The name of the savegame being created/loaded
* @param fop Save or load mode. Load can also be a TTD(Patch) game.
* @param sb The sub directory to save the savegame in
* @param threaded True when threaded saving is allowed
* @return Return the result of the action. #SL_OK, #SL_ERROR, or #SL_REINIT ("unload" the game)
*/
SaveOrLoadResult SaveOrLoad(const std::string &filename, SaveLoadOperation fop, DetailedFileType dft, Subdirectory sb, bool threaded)
{
/* An instance of saving is already active, so don't go saving again */
if (_sl.saveinprogress && fop == SLO_SAVE && dft == DFT_GAME_FILE && threaded) {
/* if not an autosave, but a user action, show error message */
if (!_do_autosave) ShowErrorMessage(STR_ERROR_SAVE_STILL_IN_PROGRESS, INVALID_STRING_ID, WL_ERROR);
return SL_OK;
}
WaitTillSaved();
try {
/* Load a TTDLX or TTDPatch game */
if (fop == SLO_LOAD && dft == DFT_OLD_GAME_FILE) {
ResetSaveloadData();
InitializeGame(256, 256, true, true); // set a mapsize of 256x256 for TTDPatch games or it might get confused
/* TTD/TTO savegames have no NewGRFs, TTDP savegame have them
* and if so a new NewGRF list will be made in LoadOldSaveGame.
* Note: this is done here because AfterLoadGame is also called
* for OTTD savegames which have their own NewGRF logic. */
ClearGRFConfigList(&_grfconfig);
GamelogReset();
if (!LoadOldSaveGame(filename)) return SL_REINIT;
_sl_version = SL_MIN_VERSION;
_sl_minor_version = 0;
GamelogStartAction(GLAT_LOAD);
if (!AfterLoadGame()) {
GamelogStopAction();
return SL_REINIT;
}
GamelogStopAction();
return SL_OK;
}
assert(dft == DFT_GAME_FILE);
switch (fop) {
case SLO_CHECK:
_sl.action = SLA_LOAD_CHECK;
break;
case SLO_LOAD:
_sl.action = SLA_LOAD;
break;
case SLO_SAVE:
_sl.action = SLA_SAVE;
break;
default: NOT_REACHED();
}
FILE *fh = (fop == SLO_SAVE) ? FioFOpenFile(filename, "wb", sb) : FioFOpenFile(filename, "rb", sb);
/* Make it a little easier to load savegames from the console */
if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", SAVE_DIR);
if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", BASE_DIR);
if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", SCENARIO_DIR);
if (fh == nullptr) {
SlError(fop == SLO_SAVE ? STR_GAME_SAVELOAD_ERROR_FILE_NOT_WRITEABLE : STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE);
}
if (fop == SLO_SAVE) { // SAVE game
Debug(desync, 1, "save: {:08x}; {:02x}; {}", _date, _date_fract, filename);
if (_network_server || !_settings_client.gui.threaded_saves) threaded = false;
return DoSave(new FileWriter(fh), threaded);
}
/* LOAD game */
assert(fop == SLO_LOAD || fop == SLO_CHECK);
Debug(desync, 1, "load: {}", filename);
return DoLoad(new FileReader(fh), fop == SLO_CHECK);
} catch (...) {
/* This code may be executed both for old and new save games. */
ClearSaveLoadState();
/* Skip the "colour" character */
if (fop != SLO_CHECK) Debug(sl, 0, "{}", GetSaveLoadErrorString());
/* A saver/loader exception!! reinitialize all variables to prevent crash! */
return (fop == SLO_LOAD) ? SL_REINIT : SL_ERROR;
}
}
/**
* Create an autosave or netsave.
* @param counter A reference to the counter variable to be used for rotating the file name.
* @param netsave Indicates if this is a regular autosave or a netsave.
*/
void DoAutoOrNetsave(FiosNumberedSaveName &counter)
{
char buf[MAX_PATH];
if (_settings_client.gui.keep_all_autosave) {
GenerateDefaultSaveName(buf, lastof(buf));
strecat(buf, counter.Extension().c_str(), lastof(buf));
} else {
strecpy(buf, counter.Filename().c_str(), lastof(buf));
}
Debug(sl, 2, "Autosaving to '{}'", buf);
if (SaveOrLoad(buf, SLO_SAVE, DFT_GAME_FILE, AUTOSAVE_DIR) != SL_OK) {
ShowErrorMessage(STR_ERROR_AUTOSAVE_FAILED, INVALID_STRING_ID, WL_ERROR);
}
}
/** Do a save when exiting the game (_settings_client.gui.autosave_on_exit) */
void DoExitSave()
{
SaveOrLoad("exit.sav", SLO_SAVE, DFT_GAME_FILE, AUTOSAVE_DIR);
}
/**
* Fill the buffer with the default name for a savegame *or* screenshot.
* @param buf the buffer to write to.
* @param last the last element in the buffer.
*/
void GenerateDefaultSaveName(char *buf, const char *last)
{
/* Check if we have a name for this map, which is the name of the first
* available company. When there's no company available we'll use
* 'Spectator' as "company" name. */
CompanyID cid = _local_company;
if (!Company::IsValidID(cid)) {
for (const Company *c : Company::Iterate()) {
cid = c->index;
break;
}
}
SetDParam(0, cid);
/* Insert current date */
switch (_settings_client.gui.date_format_in_default_names) {
case 0: SetDParam(1, STR_JUST_DATE_LONG); break;
case 1: SetDParam(1, STR_JUST_DATE_TINY); break;
case 2: SetDParam(1, STR_JUST_DATE_ISO); break;
default: NOT_REACHED();
}
SetDParam(2, _date);
/* Get the correct string (special string for when there's not company) */
GetString(buf, !Company::IsValidID(cid) ? STR_SAVEGAME_NAME_SPECTATOR : STR_SAVEGAME_NAME_DEFAULT, last);
SanitizeFilename(buf);
}
/**
* Set the mode and file type of the file to save or load based on the type of file entry at the file system.
* @param ft Type of file entry of the file system.
*/
void FileToSaveLoad::SetMode(FiosType ft)
{
this->SetMode(SLO_LOAD, GetAbstractFileType(ft), GetDetailedFileType(ft));
}
/**
* Set the mode and file type of the file to save or load.
* @param fop File operation being performed.
* @param aft Abstract file type.
* @param dft Detailed file type.
*/
void FileToSaveLoad::SetMode(SaveLoadOperation fop, AbstractFileType aft, DetailedFileType dft)
{
if (aft == FT_INVALID || aft == FT_NONE) {
this->file_op = SLO_INVALID;
this->detail_ftype = DFT_INVALID;
this->abstract_ftype = FT_INVALID;
return;
}
this->file_op = fop;
this->detail_ftype = dft;
this->abstract_ftype = aft;
}
/**
* Set the name of the file.
* @param name Name of the file.
*/
void FileToSaveLoad::SetName(const char *name)
{
this->name = name;
}
/**
* Set the title of the file.
* @param title Title of the file.
*/
void FileToSaveLoad::SetTitle(const char *title)
{
strecpy(this->title, title, lastof(this->title));
}
SaveLoadTable SaveLoadHandler::GetLoadDescription() const
{
assert(this->load_description.has_value());
return *this->load_description;
}