OpenTTD/src/blitter/32bpp_optimized.cpp

386 lines
11 KiB
C++

/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file 32bpp_optimized.cpp Implementation of the optimized 32 bpp blitter. */
#include "../stdafx.h"
#include "../zoom_func.h"
#include "../core/math_func.hpp"
#include "32bpp_optimized.hpp"
static FBlitter_32bppOptimized iFBlitter_32bppOptimized;
/**
* Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
*
* @tparam mode blitter mode
* @param bp further blitting parameters
* @param zoom zoom level at which we are drawing
*/
template <BlitterMode mode>
inline void Blitter_32bppOptimized::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
{
const SpriteData *src = (const SpriteData *)bp->sprite;
/* src_px : each line begins with uint32 n = 'number of bytes in this line',
* then n times is the Colour struct for this line */
const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]);
/* src_n : each line begins with uint32 n = 'number of bytes in this line',
* then interleaved stream of 'm' and 'n' channels. 'm' is remap,
* 'n' is number of bytes with the same alpha channel class */
const uint8 *src_n = (const uint8 *)(src->data + src->offset[zoom][1]);
/* skip upper lines in src_px and src_n */
for (uint i = bp->skip_top; i != 0; i--) {
src_px = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
src_n += *(uint32 *)src_n;
}
/* skip lines in dst */
uint32 *dst = (uint32 *)bp->dst + bp->top * bp->pitch + bp->left;
/* store so we don't have to access it via bp everytime (compiler assumes pointer aliasing) */
const byte *remap = bp->remap;
for (int y = 0; y < bp->height; y++) {
/* next dst line begins here */
uint32 *dst_ln = dst + bp->pitch;
/* next src line begins here */
const Colour *src_px_ln = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
src_px++;
/* next src_n line begins here */
const uint8 *src_n_ln = src_n + *(uint32 *)src_n;
src_n += 4;
/* we will end this line when we reach this point */
uint32 *dst_end = dst + bp->skip_left;
/* number of pixels with the same aplha channel class */
uint n;
while (dst < dst_end) {
n = *src_n++;
if (src_px->a == 0) {
dst += n;
src_px ++;
src_n++;
} else {
if (dst + n > dst_end) {
uint d = dst_end - dst;
src_px += d;
src_n += d;
dst = dst_end - bp->skip_left;
dst_end = dst + bp->width;
n = min<uint>(n - d, (uint)bp->width);
goto draw;
}
dst += n;
src_px += n;
src_n += n;
}
}
dst -= bp->skip_left;
dst_end -= bp->skip_left;
dst_end += bp->width;
while (dst < dst_end) {
n = min<uint>(*src_n++, (uint)(dst_end - dst));
if (src_px->a == 0) {
dst += n;
src_px++;
src_n++;
continue;
}
draw:;
switch (mode) {
case BM_COLOUR_REMAP:
if (src_px->a == 255) {
do {
uint m = *src_n;
/* In case the m-channel is zero, do not remap this pixel in any way */
if (m == 0) {
*dst = src_px->data;
} else {
uint r = remap[m];
if (r != 0) *dst = this->LookupColourInPalette(r);
}
dst++;
src_px++;
src_n++;
} while (--n != 0);
} else {
do {
uint m = *src_n;
if (m == 0) {
*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
} else {
uint r = remap[m];
if (r != 0) *dst = ComposeColourPANoCheck(this->LookupColourInPalette(r), src_px->a, *dst);
}
dst++;
src_px++;
src_n++;
} while (--n != 0);
}
break;
case BM_TRANSPARENT:
/* TODO -- We make an assumption here that the remap in fact is transparency, not some colour.
* This is never a problem with the code we produce, but newgrfs can make it fail... or at least:
* we produce a result the newgrf maker didn't expect ;) */
/* Make the current colour a bit more black, so it looks like this image is transparent */
src_n += n;
if (src_px->a == 255) {
src_px += n;
do {
*dst = MakeTransparent(*dst, 3, 4);
dst++;
} while (--n != 0);
} else {
do {
*dst = MakeTransparent(*dst, (256 * 4 - src_px->a), 256 * 4);
dst++;
src_px++;
} while (--n != 0);
}
break;
default:
if (src_px->a == 255) {
/* faster than memcpy(), n is usually low */
src_n += n;
do {
*dst = src_px->data;
dst++;
src_px++;
} while (--n != 0);
} else {
src_n += n;
do {
*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
dst++;
src_px++;
} while (--n != 0);
}
break;
}
}
dst = dst_ln;
src_px = src_px_ln;
src_n = src_n_ln;
}
}
/**
* Draws a sprite to a (screen) buffer. Calls adequate templated function.
*
* @param bp further blitting parameters
* @param mode blitter mode
* @param zoom zoom level at which we are drawing
*/
void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
{
switch (mode) {
default: NOT_REACHED();
case BM_NORMAL: Draw<BM_NORMAL> (bp, zoom); return;
case BM_COLOUR_REMAP: Draw<BM_COLOUR_REMAP>(bp, zoom); return;
case BM_TRANSPARENT: Draw<BM_TRANSPARENT> (bp, zoom); return;
}
}
/**
* Resizes the sprite in a very simple way, takes every n-th pixel and every n-th row
*
* @param sprite_src sprite to resize
* @param zoom resizing scale
* @return resized sprite
*/
static const SpriteLoader::Sprite *ResizeSprite(const SpriteLoader::Sprite *sprite_src, ZoomLevel zoom)
{
SpriteLoader::Sprite *sprite = MallocT<SpriteLoader::Sprite>(1);
if (zoom == ZOOM_LVL_NORMAL) {
memcpy(sprite, sprite_src, sizeof(*sprite));
uint size = sprite_src->height * sprite_src->width;
sprite->data = MallocT<SpriteLoader::CommonPixel>(size);
memcpy(sprite->data, sprite_src->data, size * sizeof(SpriteLoader::CommonPixel));
return sprite;
}
sprite->height = UnScaleByZoom(sprite_src->height, zoom);
sprite->width = UnScaleByZoom(sprite_src->width, zoom);
sprite->x_offs = UnScaleByZoom(sprite_src->x_offs, zoom);
sprite->y_offs = UnScaleByZoom(sprite_src->y_offs, zoom);
uint size = sprite->height * sprite->width;
SpriteLoader::CommonPixel *dst = sprite->data = CallocT<SpriteLoader::CommonPixel>(size);
const SpriteLoader::CommonPixel *src = (SpriteLoader::CommonPixel *)sprite_src->data;
const SpriteLoader::CommonPixel *src_end = src + sprite_src->height * sprite_src->width;
uint scaled_1 = ScaleByZoom(1, zoom);
for (uint y = 0; y < sprite->height; y++) {
if (src >= src_end) src = src_end - sprite_src->width;
const SpriteLoader::CommonPixel *src_ln = src + sprite_src->width * scaled_1;
for (uint x = 0; x < sprite->width; x++) {
if (src >= src_ln) src = src_ln - 1;
*dst = *src;
dst++;
src += scaled_1;
}
src = src_ln;
}
return sprite;
}
Sprite *Blitter_32bppOptimized::Encode(SpriteLoader::Sprite *sprite, Blitter::AllocatorProc *allocator)
{
/* streams of pixels (a, r, g, b channels)
*
* stored in separated stream so data are always aligned on 4B boundary */
Colour *dst_px_orig[ZOOM_LVL_COUNT];
/* interleaved stream of 'm' channel and 'n' channel
* 'n' is number if following pixels with the same alpha channel class
* there are 3 classes: 0, 255, others
*
* it has to be stored in one stream so fewer registers are used -
* x86 has problems with register allocation even with this solution */
uint8 *dst_n_orig[ZOOM_LVL_COUNT];
/* lengths of streams */
uint32 lengths[ZOOM_LVL_COUNT][2];
for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
const SpriteLoader::Sprite *src_orig = ResizeSprite(sprite, z);
uint size = src_orig->height * src_orig->width;
dst_px_orig[z] = CallocT<Colour>(size + src_orig->height * 2);
dst_n_orig[z] = CallocT<uint8>(size * 2 + src_orig->height * 4 * 2);
uint32 *dst_px_ln = (uint32 *)dst_px_orig[z];
uint32 *dst_n_ln = (uint32 *)dst_n_orig[z];
const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *)src_orig->data;
for (uint y = src_orig->height; y > 0; y--) {
Colour *dst_px = (Colour *)(dst_px_ln + 1);
uint8 *dst_n = (uint8 *)(dst_n_ln + 1);
uint8 *dst_len = dst_n++;
uint last = 3;
int len = 0;
for (uint x = src_orig->width; x > 0; x--) {
uint8 a = src->a;
uint t = a > 0 && a < 255 ? 1 : a;
if (last != t || len == 255) {
if (last != 3) {
*dst_len = len;
dst_len = dst_n++;
}
len = 0;
}
last = t;
len++;
if (a != 0) {
dst_px->a = a;
*dst_n = src->m;
if (src->m != 0) {
/* Pre-convert the mapping channel to a RGB value */
uint32 colour = this->LookupColourInPalette(src->m);
dst_px->r = GB(colour, 16, 8);
dst_px->g = GB(colour, 8, 8);
dst_px->b = GB(colour, 0, 8);
} else {
dst_px->r = src->r;
dst_px->g = src->g;
dst_px->b = src->b;
}
dst_px++;
dst_n++;
} else if (len == 1) {
dst_px++;
*dst_n = src->m;
dst_n++;
}
src++;
}
if (last != 3) {
*dst_len = len;
}
dst_px = (Colour *)AlignPtr(dst_px, 4);
dst_n = (uint8 *)AlignPtr(dst_n, 4);
*dst_px_ln = (uint8 *)dst_px - (uint8 *)dst_px_ln;
*dst_n_ln = (uint8 *)dst_n - (uint8 *)dst_n_ln;
dst_px_ln = (uint32 *)dst_px;
dst_n_ln = (uint32 *)dst_n;
}
lengths[z][0] = (byte *)dst_px_ln - (byte *)dst_px_orig[z]; // all are aligned to 4B boundary
lengths[z][1] = (byte *)dst_n_ln - (byte *)dst_n_orig[z];
free(src_orig->data);
free((void *)src_orig);
}
uint len = 0; // total length of data
for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
len += lengths[z][0] + lengths[z][1];
}
Sprite *dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sizeof(SpriteData) + len);
dest_sprite->height = sprite->height;
dest_sprite->width = sprite->width;
dest_sprite->x_offs = sprite->x_offs;
dest_sprite->y_offs = sprite->y_offs;
SpriteData *dst = (SpriteData *)dest_sprite->data;
for (ZoomLevel z = ZOOM_LVL_BEGIN; z < ZOOM_LVL_END; z++) {
dst->offset[z][0] = z == ZOOM_LVL_BEGIN ? 0 : lengths[z - 1][1] + dst->offset[z - 1][1];
dst->offset[z][1] = lengths[z][0] + dst->offset[z][0];
memcpy(dst->data + dst->offset[z][0], dst_px_orig[z], lengths[z][0]);
memcpy(dst->data + dst->offset[z][1], dst_n_orig[z], lengths[z][1]);
free(dst_px_orig[z]);
free(dst_n_orig[z]);
}
return dest_sprite;
}