OpenTTD/npf.h

207 lines
7.7 KiB
C

#ifndef NPF_H
#define NPF_H
#include "ttd.h"
#include "aystar.h"
#include "vehicle.h"
//mowing grass
enum {
NPF_HASH_BITS = 12, /* The size of the hash used in pathfinding. Just changing this value should be sufficient to change the hash size. Should be an even value. */
/* Do no change below values */
NPF_HASH_SIZE = 1 << NPF_HASH_BITS,
NPF_HASH_HALFBITS = NPF_HASH_BITS / 2,
NPF_HASH_HALFMASK = (1 << NPF_HASH_HALFBITS) - 1
};
enum {
/** This penalty is the equivalent of "inifite", which means that paths that
* get this penalty will be chosen, but only if there is no other route
* without it. Be careful with not applying this penalty to often, or the
* total path cost might overflow..
* For now, this is just a Very Big Penalty, we might actually implement
* this in a nicer way :-)
*/
NPF_INFINITE_PENALTY = 1000 * NPF_TILE_LENGTH
};
typedef struct NPFFindStationOrTileData { /* Meant to be stored in AyStar.targetdata */
TileIndex dest_coords; /* An indication of where the station is, for heuristic purposes, or the target tile */
int station_index; /* station index we're heading for, or -1 when we're heading for a tile */
} NPFFindStationOrTileData;
enum { /* Indices into AyStar.userdata[] */
NPF_TYPE = 0, /* Contains a TransportTypes value */
NPF_OWNER, /* Contains an Owner value */
};
enum { /* Indices into AyStarNode.userdata[] */
NPF_TRACKDIR_CHOICE = 0, /* The trackdir chosen to get here */
NPF_NODE_FLAGS,
};
typedef enum { /* Flags for AyStarNode.userdata[NPF_NODE_FLAGS]. Use NPFGetBit() and NPFGetBit() to use them. */
NPF_FLAG_SEEN_SIGNAL, /* Used to mark that a signal was seen on the way, for rail only */
NPF_FLAG_REVERSE, /* Used to mark that this node was reached from the second start node, if applicable */
NPF_FLAG_LAST_SIGNAL_RED, /* Used to mark that the last signal on this path was red */
NPF_FLAG_TARGET_CHECKED, /* Used by end node checking function of npf to mark
that they have evaluated this node. When this
flag is on, NPF_FLAG_IS_TARGET is on when the
node is a target, and off when it is not. Should
never be used directly, only by the end node
checking functions for caching of results. */
NPF_FLAG_IS_TARGET, /* See comment for NPF_FLAG_TARGET_CHECKED */
} NPFNodeFlag;
typedef struct NPFFoundTargetData { /* Meant to be stored in AyStar.userpath */
uint best_bird_dist; /* The best heuristic found. Is 0 if the target was found */
uint best_path_dist; /* The shortest path. Is (uint)-1 if no path is found */
byte best_trackdir; /* The trackdir that leads to the shortest path/closest birds dist */
AyStarNode node; /* The node within the target the search led us to */
} NPFFoundTargetData;
/* These functions below are _not_ re-entrant, in favor of speed! */
/* Will search from the given tile and direction, for a route to the given
* station for the given transport type. See the declaration of
* NPFFoundTargetData above for the meaning of the result. */
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner);
/* Will search as above, but with two start nodes, the second being the
* reverse. Look at the NPF_FLAG_REVERSE flag in the result node to see which
* direction was taken (NPFGetBit(result.node, NPF_FLAG_REVERSE)) */
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner);
/* Will search a route to the closest depot. */
/* Search using breadth first. Good for little track choice and inaccurate
* heuristic, such as railway/road.*/
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type, Owner owner);
/* Same as above but with two start nodes, the second being the reverse. Call
* NPFGetBit(result.node, NPF_FLAG_REVERSE) to see from which node the path
* orginated. All pathfs from the second node will have the given
* reverse_penalty applied (NPF_TILE_LENGTH is the equivalent of one full
* tile).
*/
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, TransportType type, Owner owner, uint reverse_penalty);
/* Search by trying each depot in order of Manhattan Distance. Good for lots
* of choices and accurate heuristics, such as water. */
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type, Owner owner);
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v);
/*
* Functions to manipulate the various NPF related flags on an AyStarNode.
*/
/**
* Returns the current value of the given flag on the given AyStarNode.
*/
static inline bool NPFGetFlag(const AyStarNode* node, NPFNodeFlag flag)
{
return HASBIT(node->user_data[NPF_NODE_FLAGS], flag);
}
/**
* Sets the given flag on the given AyStarNode to the given value.
*/
static inline void NPFSetFlag(AyStarNode* node, NPFNodeFlag flag, bool value)
{
if (value)
SETBIT(node->user_data[NPF_NODE_FLAGS], flag);
else
CLRBIT(node->user_data[NPF_NODE_FLAGS], flag);
}
/*
* Some tables considering tracks, directions and signals.
* XXX: Better place to but these?
*/
/**
* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction along with the trackdir.
*/
const byte _signal_along_trackdir[14];
/**
* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction against the trackdir.
*/
const byte _signal_against_trackdir[14];
/**
* Maps a trackdir to the trackdirs that can be reached from it (ie, when
* entering the next tile.
*/
const uint16 _trackdir_reaches_trackdirs[14];
/**
* Maps a trackdir to the trackdir that you will end up on if you go straight
* ahead. This will be the same trackdir for diagonal trackdirs, but a
* different (alternating) one for straight trackdirs */
const uint16 _next_trackdir[14];
/**
* Maps a trackdir to all trackdirs that make 90 deg turns with it.
*/
const uint16 _trackdir_crosses_trackdirs[14];
/**
* Maps a track to all tracks that make 90 deg turns with it.
*/
const byte _track_crosses_tracks[6];
/**
* Maps a trackdir to the (4-way) direction the tile is exited when following
* that trackdir.
*/
const byte _trackdir_to_exitdir[14];
/**
* Maps a track and an (4-way) dir to the trackdir that represents the track
* with the exit in the given direction.
*/
const byte _track_exitdir_to_trackdir[6][4];
/**
* Maps a track and a full (8-way) direction to the trackdir that represents
* the track running in the given direction.
*/
const byte _track_direction_to_trackdir[6][8];
/**
* Maps a (4-way) direction to the diagonal track that runs in that
* direction.
*/
const byte _dir_to_diag_trackdir[4];
/**
* Maps a (4-way) direction to the reverse.
*/
const byte _reverse_dir[4];
/**
* Maps a trackdir to the reverse trackdir.
*/
const byte _reverse_trackdir[14];
/* Returns the Track that a given Trackdir represents */
static inline byte TrackdirToTrack(byte trackdir) { return trackdir & 0x7; }
/* Returns a Trackdir for the given Track. Since every Track corresponds to
* two Trackdirs, we choose the one which points between N and SE.
* Note that the actual implementation is quite futile, but this might change
* in the future.
*/
static inline byte TrackToTrackdir(byte track) { return track; }
/* Checks if a given Track is diagonal */
static inline bool IsDiagonalTrack(byte track) { return track == 0x0 || track == 0x1; }
/* Checks if a given Trackdir is diagonal. */
static inline bool IsDiagonalTrackdir(byte trackdir) { return IsDiagonalTrack(TrackdirToTrack(trackdir)); }
#define REVERSE_TRACKDIR(trackdir) (trackdir ^ 0x8)
#endif // NPF_H