Linux/MacOSX crypto: report XTS optimization implemented previously on Windows

c
This commit is contained in:
Mounir IDRASSI 2019-01-25 18:38:01 +01:00
parent d8d92357b0
commit ce0a34941a
No known key found for this signature in database
GPG Key ID: 02C30AE90FAE4A6F
1 changed files with 90 additions and 49 deletions

View File

@ -10,9 +10,41 @@
code distribution packages.
*/
#include "Crypto/cpu.h"
#include "Crypto/misc.h"
#include "EncryptionModeXTS.h"
#include "Common/Crypto.h"
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
#define XorBlocks(result,ptr,len,start,end) \
while (len >= 2) \
{ \
__m128i xmm1 = _mm_loadu_si128((const __m128i*) ptr); \
__m128i xmm2 = _mm_loadu_si128((__m128i*)result); \
__m128i xmm3 = _mm_loadu_si128((const __m128i*) (ptr + 2)); \
__m128i xmm4 = _mm_loadu_si128((__m128i*)(result + 2)); \
\
_mm_storeu_si128((__m128i*)result, _mm_xor_si128(xmm1, xmm2)); \
_mm_storeu_si128((__m128i*)(result + 2), _mm_xor_si128(xmm3, xmm4)); \
ptr+= 4; \
result+= 4; \
len -= 2; \
} \
\
if (len) \
{ \
__m128i xmm1 = _mm_loadu_si128((const __m128i*)ptr); \
__m128i xmm2 = _mm_loadu_si128((__m128i*)result); \
\
_mm_storeu_si128((__m128i*)result, _mm_xor_si128(xmm1, xmm2)); \
ptr+= 2; \
result+= 2; \
} \
len = end - start;
#endif
namespace VeraCrypt
{
void EncryptionModeXTS::Encrypt (byte *data, uint64 length) const
@ -45,9 +77,8 @@ namespace VeraCrypt
uint64 *whiteningValuePtr64 = (uint64 *) whiteningValue;
uint64 *bufPtr = (uint64 *) buffer;
uint64 *dataUnitBufPtr;
unsigned int startBlock = startCipherBlockNo, endBlock, block;
uint64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
uint64 blockCount, dataUnitNo;
unsigned int startBlock = startCipherBlockNo, endBlock, block, countBlock;
uint64 remainingBlocks, dataUnitNo;
startDataUnitNo += SectorOffset;
@ -67,17 +98,18 @@ namespace VeraCrypt
if (length % BYTES_PER_XTS_BLOCK)
TC_THROW_FATAL_EXCEPTION;
blockCount = length / BYTES_PER_XTS_BLOCK;
remainingBlocks = length / BYTES_PER_XTS_BLOCK;
// Process all blocks in the buffer
while (blockCount > 0)
while (remainingBlocks > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
if (remainingBlocks < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) remainingBlocks;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
countBlock = endBlock - startBlock;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuesPtr64 = (uint64 *) whiteningValues;
whiteningValuePtr64 = (uint64 *) whiteningValue;
// Encrypt the data unit number using the secondary key (in order to generate the first
@ -87,13 +119,13 @@ namespace VeraCrypt
secondaryCipher.EncryptBlock (whiteningValue);
// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
// whitening values are stored in memory as a sequence of 64-bit integers.
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
*whiteningValuesPtr64-- = *whiteningValuePtr64++;
*whiteningValuesPtr64-- = *whiteningValuePtr64;
*whiteningValuesPtr64++ = *whiteningValuePtr64++;
*whiteningValuesPtr64++ = *whiteningValuePtr64;
}
else
whiteningValuePtr64++;
@ -136,31 +168,36 @@ namespace VeraCrypt
}
dataUnitBufPtr = bufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuesPtr64 = (uint64 *) whiteningValues;
// Encrypt all blocks in this data unit
for (block = startBlock; block < endBlock; block++)
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
for (block = 0; block < countBlock; block++)
{
// Pre-whitening
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64++;
*bufPtr++ ^= *whiteningValuesPtr64++;
}
#endif
// Actual encryption
cipher.EncryptBlocks ((byte *) dataUnitBufPtr, endBlock - startBlock);
cipher.EncryptBlocks ((byte *) dataUnitBufPtr, countBlock);
bufPtr = dataUnitBufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuesPtr64 = (uint64 *) whiteningValues;
for (block = startBlock; block < endBlock; block++)
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
for (block = 0; block < countBlock; block++)
{
// Post-whitening
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64++;
*bufPtr++ ^= *whiteningValuesPtr64++;
}
blockCount -= endBlock - startBlock;
#endif
remainingBlocks -= countBlock;
startBlock = 0;
dataUnitNo++;
*((uint64 *) byteBufUnitNo) = Endian::Little (dataUnitNo);
@ -219,9 +256,8 @@ namespace VeraCrypt
uint64 *whiteningValuePtr64 = (uint64 *) whiteningValue;
uint64 *bufPtr = (uint64 *) buffer;
uint64 *dataUnitBufPtr;
unsigned int startBlock = startCipherBlockNo, endBlock, block;
uint64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
uint64 blockCount, dataUnitNo;
unsigned int startBlock = startCipherBlockNo, endBlock, block, countBlock;
uint64 remainingBlocks, dataUnitNo;
startDataUnitNo += SectorOffset;
@ -234,17 +270,18 @@ namespace VeraCrypt
if (length % BYTES_PER_XTS_BLOCK)
TC_THROW_FATAL_EXCEPTION;
blockCount = length / BYTES_PER_XTS_BLOCK;
remainingBlocks = length / BYTES_PER_XTS_BLOCK;
// Process all blocks in the buffer
while (blockCount > 0)
while (remainingBlocks > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
if (remainingBlocks < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) remainingBlocks;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
countBlock = endBlock - startBlock;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuesPtr64 = (uint64 *) whiteningValues;
whiteningValuePtr64 = (uint64 *) whiteningValue;
// Encrypt the data unit number using the secondary key (in order to generate the first
@ -254,13 +291,13 @@ namespace VeraCrypt
secondaryCipher.EncryptBlock (whiteningValue);
// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
// whitening values are stored in memory as a sequence of 64-bit integers.
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
*whiteningValuesPtr64-- = *whiteningValuePtr64++;
*whiteningValuesPtr64-- = *whiteningValuePtr64;
*whiteningValuesPtr64++ = *whiteningValuePtr64++;
*whiteningValuesPtr64++ = *whiteningValuePtr64;
}
else
whiteningValuePtr64++;
@ -303,28 +340,32 @@ namespace VeraCrypt
}
dataUnitBufPtr = bufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuesPtr64 = (uint64 *) whiteningValues;
// Decrypt blocks in this data unit
for (block = startBlock; block < endBlock; block++)
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
for (block = 0; block < countBlock; block++)
{
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64++;
*bufPtr++ ^= *whiteningValuesPtr64++;
}
cipher.DecryptBlocks ((byte *) dataUnitBufPtr, endBlock - startBlock);
#endif
cipher.DecryptBlocks ((byte *) dataUnitBufPtr, countBlock);
bufPtr = dataUnitBufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
for (block = startBlock; block < endBlock; block++)
whiteningValuesPtr64 = (uint64 *) whiteningValues;
#if (CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && CRYPTOPP_BOOL_X64)
XorBlocks (bufPtr, whiteningValuesPtr64, countBlock, startBlock, endBlock);
#else
for (block = 0; block < countBlock; block++)
{
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64++;
*bufPtr++ ^= *whiteningValuesPtr64++;
}
blockCount -= endBlock - startBlock;
#endif
remainingBlocks -= countBlock;
startBlock = 0;
dataUnitNo++;