VeraCrypt/src/Crypto/Sha2.c

865 lines
22 KiB
C

/*
This code is written by kerukuro for cppcrypto library (http://cppcrypto.sourceforge.net/)
and released into public domain.
*/
/* Modified for VeraCrypt with speed optimization for C implementation */
#include "Sha2.h"
#include "Common/Endian.h"
#include "Crypto/cpu.h"
#include "Crypto/misc.h"
#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
#define NO_OPTIMIZED_VERSIONS
#endif
#ifndef NO_OPTIMIZED_VERSIONS
#if defined(__cplusplus)
extern "C"
{
#endif
#if CRYPTOPP_BOOL_X64
void sha512_rorx(const void* M, void* D, uint_64t l);
void sha512_sse4(const void* M, uint_64t D[8], uint_64t l);
void sha512_avx(const void* M, void* D, uint_64t l);
#endif
#if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX))
void sha512_compress_nayuki(uint_64t state[8], const uint_8t block[128]);
#endif
#if defined(__cplusplus)
}
#endif
#endif
typedef void (*transformFn)(sha512_ctx* ctx, void* m, uint_64t num_blks);
transformFn transfunc = NULL;
static const uint_64t K[80] = {
LL(0x428a2f98d728ae22), LL(0x7137449123ef65cd), LL(0xb5c0fbcfec4d3b2f), LL(0xe9b5dba58189dbbc),
LL(0x3956c25bf348b538), LL(0x59f111f1b605d019), LL(0x923f82a4af194f9b), LL(0xab1c5ed5da6d8118),
LL(0xd807aa98a3030242), LL(0x12835b0145706fbe), LL(0x243185be4ee4b28c), LL(0x550c7dc3d5ffb4e2),
LL(0x72be5d74f27b896f), LL(0x80deb1fe3b1696b1), LL(0x9bdc06a725c71235), LL(0xc19bf174cf692694),
LL(0xe49b69c19ef14ad2), LL(0xefbe4786384f25e3), LL(0x0fc19dc68b8cd5b5), LL(0x240ca1cc77ac9c65),
LL(0x2de92c6f592b0275), LL(0x4a7484aa6ea6e483), LL(0x5cb0a9dcbd41fbd4), LL(0x76f988da831153b5),
LL(0x983e5152ee66dfab), LL(0xa831c66d2db43210), LL(0xb00327c898fb213f), LL(0xbf597fc7beef0ee4),
LL(0xc6e00bf33da88fc2), LL(0xd5a79147930aa725), LL(0x06ca6351e003826f), LL(0x142929670a0e6e70),
LL(0x27b70a8546d22ffc), LL(0x2e1b21385c26c926), LL(0x4d2c6dfc5ac42aed), LL(0x53380d139d95b3df),
LL(0x650a73548baf63de), LL(0x766a0abb3c77b2a8), LL(0x81c2c92e47edaee6), LL(0x92722c851482353b),
LL(0xa2bfe8a14cf10364), LL(0xa81a664bbc423001), LL(0xc24b8b70d0f89791), LL(0xc76c51a30654be30),
LL(0xd192e819d6ef5218), LL(0xd69906245565a910), LL(0xf40e35855771202a), LL(0x106aa07032bbd1b8),
LL(0x19a4c116b8d2d0c8), LL(0x1e376c085141ab53), LL(0x2748774cdf8eeb99), LL(0x34b0bcb5e19b48a8),
LL(0x391c0cb3c5c95a63), LL(0x4ed8aa4ae3418acb), LL(0x5b9cca4f7763e373), LL(0x682e6ff3d6b2b8a3),
LL(0x748f82ee5defb2fc), LL(0x78a5636f43172f60), LL(0x84c87814a1f0ab72), LL(0x8cc702081a6439ec),
LL(0x90befffa23631e28), LL(0xa4506cebde82bde9), LL(0xbef9a3f7b2c67915), LL(0xc67178f2e372532b),
LL(0xca273eceea26619c), LL(0xd186b8c721c0c207), LL(0xeada7dd6cde0eb1e), LL(0xf57d4f7fee6ed178),
LL(0x06f067aa72176fba), LL(0x0a637dc5a2c898a6), LL(0x113f9804bef90dae), LL(0x1b710b35131c471b),
LL(0x28db77f523047d84), LL(0x32caab7b40c72493), LL(0x3c9ebe0a15c9bebc), LL(0x431d67c49c100d4c),
LL(0x4cc5d4becb3e42b6), LL(0x597f299cfc657e2a), LL(0x5fcb6fab3ad6faec), LL(0x6c44198c4a475817)
};
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
#define sum0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
#define sum1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
#define sigma0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
#define sigma1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
#define WU(j) (W[j & 15] += sigma1(W[(j + 14) & 15]) + W[(j + 9) & 15] + sigma0(W[(j + 1) & 15]))
#define COMPRESS_ROUND(i, j, K) \
T1 = h + sum1(e) + Ch(e, f, g) + K[i + j] + (i? WU(j): W[j]); \
T2 = sum0(a) + Maj(a, b, c); \
h = g; \
g = f; \
f = e; \
e = d + T1; \
d = c; \
c = b; \
b = a; \
a = T1 + T2;
void StdTransform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t blk;
for (blk = 0; blk < num_blks; blk++)
{
uint_64t W[16];
uint_64t a,b,c,d,e,f,g,h;
uint_64t T1, T2;
int i;
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
int j;
#endif
for (i = 0; i < 128 / 8; i++)
{
W[i] = bswap_64((((const uint_64t*)(mp))[blk * 16 + i]));
}
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
f = ctx->hash[5];
g = ctx->hash[6];
h = ctx->hash[7];
for (i = 0; i <= 79; i+=16)
{
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
for (j = 0; j < 16; j++)
{
COMPRESS_ROUND(i, j, K);
}
#else
COMPRESS_ROUND(i, 0, K);
COMPRESS_ROUND(i, 1, K);
COMPRESS_ROUND(i , 2, K);
COMPRESS_ROUND(i, 3, K);
COMPRESS_ROUND(i, 4, K);
COMPRESS_ROUND(i, 5, K);
COMPRESS_ROUND(i, 6, K);
COMPRESS_ROUND(i, 7, K);
COMPRESS_ROUND(i, 8, K);
COMPRESS_ROUND(i, 9, K);
COMPRESS_ROUND(i, 10, K);
COMPRESS_ROUND(i, 11, K);
COMPRESS_ROUND(i, 12, K);
COMPRESS_ROUND(i, 13, K);
COMPRESS_ROUND(i, 14, K);
COMPRESS_ROUND(i, 15, K);
#endif
}
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
}
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
void Avx2Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha512_rorx(mp, ctx->hash, num_blks);
else
sha512_sse4(mp, ctx->hash, num_blks);
}
void AvxTransform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha512_avx(mp, ctx->hash, num_blks);
else
sha512_sse4(mp, ctx->hash, num_blks);
}
void SSE4Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
sha512_sse4(mp, ctx->hash, num_blks);
}
#endif
#if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX))
void SSE2Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t i;
for (i = 0; i < num_blks; i++)
sha512_compress_nayuki(ctx->hash, (uint_8t*)mp + i * 128);
}
#endif
#endif // NO_OPTIMIZED_VERSIONS
void sha512_begin(sha512_ctx* ctx)
{
ctx->hash[0] = LL(0x6a09e667f3bcc908);
ctx->hash[1] = LL(0xbb67ae8584caa73b);
ctx->hash[2] = LL(0x3c6ef372fe94f82b);
ctx->hash[3] = LL(0xa54ff53a5f1d36f1);
ctx->hash[4] = LL(0x510e527fade682d1);
ctx->hash[5] = LL(0x9b05688c2b3e6c1f);
ctx->hash[6] = LL(0x1f83d9abfb41bd6b);
ctx->hash[7] = LL(0x5be0cd19137e2179);
ctx->count[0] = 0;
ctx->count[1] = 0;
if (!transfunc)
{
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
if (g_isIntel&& HasSAVX2() && HasSBMI2())
transfunc = Avx2Transform;
else if (g_isIntel && HasSAVX())
{
transfunc = AvxTransform;
}
else if (HasSSE41())
{
transfunc = SSE4Transform;
}
else
#endif
#if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX))
#if CRYPTOPP_BOOL_X64
if (HasSSE2())
#else
if (HasSSSE3() && HasMMX())
#endif
transfunc = SSE2Transform;
else
#endif
#endif
transfunc = StdTransform;
}
}
void sha512_end(unsigned char * result, sha512_ctx* ctx)
{
int i;
uint_64t mlen, pos = ctx->count[0];
uint_8t* m = (uint_8t*) ctx->wbuf;
m[pos++] = 0x80;
if (pos > 112)
{
memset(m + pos, 0, (size_t) (128 - pos));
transfunc(ctx, m, 1);
pos = 0;
}
memset(m + pos, 0, (size_t) (128 - pos));
mlen = bswap_64(ctx->count[1]);
memcpy(m + (128 - 8), &mlen, 64 / 8);
transfunc(ctx, m, 1);
for (i = 0; i < 8; i++)
{
ctx->hash[i] = bswap_64(ctx->hash[i]);
}
memcpy(result, ctx->hash, 64);
}
void sha512_hash(const unsigned char * data, uint_64t len, sha512_ctx *ctx)
{
uint_64t pos = ctx->count[0];
uint_64t total = ctx->count[1];
uint_8t* m = (uint_8t*) ctx->wbuf;
if (pos && pos + len >= 128)
{
memcpy(m + pos, data, (size_t) (128 - pos));
transfunc(ctx, m, 1);
len -= 128 - pos;
total += (128 - pos) * 8;
data += 128 - pos;
pos = 0;
}
if (len >= 128)
{
uint_64t blocks = len / 128;
uint_64t bytes = blocks * 128;
transfunc(ctx, (void*)data, blocks);
len -= bytes;
total += (bytes)* 8;
data += bytes;
}
memcpy(m+pos, data, (size_t) (len));
pos += len;
total += len * 8;
ctx->count[0] = pos;
ctx->count[1] = total;
}
void sha512(unsigned char * result, const unsigned char* source, uint_64t sourceLen)
{
sha512_ctx ctx;
sha512_begin(&ctx);
sha512_hash(source, sourceLen, &ctx);
sha512_end(result, &ctx);
}
/////////////////////////////
#ifndef NO_OPTIMIZED_VERSIONS
#if defined(__cplusplus)
extern "C"
{
#endif
#if CRYPTOPP_BOOL_X64
void sha256_sse4(void *input_data, uint_32t digest[8], uint_64t num_blks);
void sha256_rorx(void *input_data, uint_32t digest[8], uint_64t num_blks);
void sha256_avx(void *input_data, uint_32t digest[8], uint_64t num_blks);
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
void sha256_compress_nayuki(uint_32t state[8], const uint_8t block[64]);
#endif
#if defined(__cplusplus)
}
#endif
#endif
CRYPTOPP_ALIGN_DATA(16) static const uint_32t SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE))
#ifdef _MSC_VER
# pragma warning(disable: 4100 4731)
#endif
static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(uint_32t *state, const uint_32t *data, size_t len)
{
#define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ
#define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4]
#define G(i) H(i+1)
#define F(i) H(i+2)
#define E(i) H(i+3)
#define D(i) H(i+4)
#define C(i) H(i+5)
#define B(i) H(i+6)
#define A(i) H(i+7)
#define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4
#define Wt_2(i) Wt((i)-2)
#define Wt_15(i) Wt((i)-15)
#define Wt_7(i) Wt((i)-7)
#define K_END [BASE+8*4+16*4+0*WORD_SZ]
#define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ]
#define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ]
#define DATA_END [BASE+8*4+16*4+3*WORD_SZ]
#define Kt(i) WORD_REG(si)+(i)*4
#if CRYPTOPP_BOOL_X32
#define BASE esp+8
#elif CRYPTOPP_BOOL_X86
#define BASE esp+4
#elif defined(__GNUC__)
#define BASE r8
#else
#define BASE rsp
#endif
#define RA0(i, edx, edi) \
AS2( add edx, [Kt(i)] )\
AS2( add edx, [Wt(i)] )\
AS2( add edx, H(i) )\
#define RA1(i, edx, edi)
#define RB0(i, edx, edi)
#define RB1(i, edx, edi) \
AS2( mov AS_REG_7d, [Wt_2(i)] )\
AS2( mov edi, [Wt_15(i)])\
AS2( mov ebx, AS_REG_7d )\
AS2( shr AS_REG_7d, 10 )\
AS2( ror ebx, 17 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\
AS2( add ebx, [Wt_7(i)])\
AS2( mov AS_REG_7d, edi )\
AS2( shr AS_REG_7d, 3 )\
AS2( ror edi, 7 )\
AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\
AS2( xor AS_REG_7d, edi )\
AS2( add edx, [Kt(i)])\
AS2( ror edi, 11 )\
AS2( add edx, H(i) )\
AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\
AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\
AS2( mov [Wt(i)], AS_REG_7d)\
AS2( add edx, AS_REG_7d )\
#define ROUND(i, r, eax, ecx, edi, edx)\
/* in: edi = E */\
/* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\
AS2( mov edx, F(i) )\
AS2( xor edx, G(i) )\
AS2( and edx, edi )\
AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\
AS2( mov AS_REG_7d, edi )\
AS2( ror edi, 6 )\
AS2( ror AS_REG_7d, 25 )\
RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
AS2( xor AS_REG_7d, edi )\
AS2( ror edi, 5 )\
AS2( xor AS_REG_7d, edi )/* S1(E) */\
AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\
RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
/* in: ecx = A, eax = B^C, edx = T1 */\
/* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\
AS2( mov ebx, ecx )\
AS2( xor ecx, B(i) )/* A^B */\
AS2( and eax, ecx )\
AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\
AS2( mov AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( add eax, edx )/* T1 + Maj(A,B,C) */\
AS2( add edx, D(i) )\
AS2( mov D(i), edx )\
AS2( ror AS_REG_7d, 22 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 11 )\
AS2( xor AS_REG_7d, ebx )\
AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\
AS2( mov H(i), eax )\
// Unroll the use of CRYPTOPP_BOOL_X64 in assembler math. The GAS assembler on X32 (version 2.25)
// complains "Error: invalid operands (*ABS* and *UND* sections) for `*` and `-`"
#if CRYPTOPP_BOOL_X64
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i*2+1)], WORD_REG(bx))
#else // X86 and X32
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i)], WORD_REG(bx))
#endif
#if defined(__GNUC__)
#if CRYPTOPP_BOOL_X64
CRYPTOPP_ALIGN_DATA(16) byte workspace[LOCALS_SIZE] ;
#endif
__asm__ __volatile__
(
#if CRYPTOPP_BOOL_X64
"lea %4, %%r8;"
#endif
INTEL_NOPREFIX
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
#ifndef __GNUC__
AS2( mov edi, [len])
AS2( lea WORD_REG(si), [SHA256_K+48*4])
#endif
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_PUSH_IF86(bx)
#endif
AS_PUSH_IF86(bp)
AS2( mov ebx, esp)
AS2( and esp, -16)
AS2( sub WORD_REG(sp), LOCALS_SIZE)
AS_PUSH_IF86(bx)
#endif
AS2( mov STATE_SAVE, WORD_REG(cx))
AS2( mov DATA_SAVE, WORD_REG(dx))
AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)])
AS2( mov DATA_END, WORD_REG(ax))
AS2( mov K_END, WORD_REG(si))
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
AS2( test edi, 1)
ASJ( jnz, 2, f)
AS1( dec DWORD PTR K_END)
#endif
AS2( movdqu xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16])
AS2( movdqu xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16])
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASJ( jmp, 0, f)
#endif
ASL(2) // non-SSE2
AS2( mov esi, ecx)
AS2( lea edi, A(0))
AS2( mov ecx, 8)
ATT_NOPREFIX
AS1( rep movsd)
INTEL_NOPREFIX
AS2( mov esi, K_END)
ASJ( jmp, 3, f)
#endif
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASL(0)
AS2( movdqu E(0), xmm1)
AS2( movdqu A(0), xmm0)
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
ASL(3)
#endif
AS2( sub WORD_REG(si), 48*4)
SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3)
SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7)
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11)
SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15)
#endif
AS2( mov edi, E(0)) // E
AS2( mov eax, B(0)) // B
AS2( xor eax, C(0)) // B^C
AS2( mov ecx, A(0)) // A
ROUND(0, 0, eax, ecx, edi, edx)
ROUND(1, 0, ecx, eax, edx, edi)
ROUND(2, 0, eax, ecx, edi, edx)
ROUND(3, 0, ecx, eax, edx, edi)
ROUND(4, 0, eax, ecx, edi, edx)
ROUND(5, 0, ecx, eax, edx, edi)
ROUND(6, 0, eax, ecx, edi, edx)
ROUND(7, 0, ecx, eax, edx, edi)
ROUND(8, 0, eax, ecx, edi, edx)
ROUND(9, 0, ecx, eax, edx, edi)
ROUND(10, 0, eax, ecx, edi, edx)
ROUND(11, 0, ecx, eax, edx, edi)
ROUND(12, 0, eax, ecx, edi, edx)
ROUND(13, 0, ecx, eax, edx, edi)
ROUND(14, 0, eax, ecx, edi, edx)
ROUND(15, 0, ecx, eax, edx, edi)
ASL(1)
AS2(add WORD_REG(si), 4*16)
ROUND(0, 1, eax, ecx, edi, edx)
ROUND(1, 1, ecx, eax, edx, edi)
ROUND(2, 1, eax, ecx, edi, edx)
ROUND(3, 1, ecx, eax, edx, edi)
ROUND(4, 1, eax, ecx, edi, edx)
ROUND(5, 1, ecx, eax, edx, edi)
ROUND(6, 1, eax, ecx, edi, edx)
ROUND(7, 1, ecx, eax, edx, edi)
ROUND(8, 1, eax, ecx, edi, edx)
ROUND(9, 1, ecx, eax, edx, edi)
ROUND(10, 1, eax, ecx, edi, edx)
ROUND(11, 1, ecx, eax, edx, edi)
ROUND(12, 1, eax, ecx, edi, edx)
ROUND(13, 1, ecx, eax, edx, edi)
ROUND(14, 1, eax, ecx, edi, edx)
ROUND(15, 1, ecx, eax, edx, edi)
AS2( cmp WORD_REG(si), K_END)
ATT_NOPREFIX
ASJ( jb, 1, b)
INTEL_NOPREFIX
AS2( mov WORD_REG(dx), DATA_SAVE)
AS2( add WORD_REG(dx), 64)
AS2( mov AS_REG_7, STATE_SAVE)
AS2( mov DATA_SAVE, WORD_REG(dx))
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
AS2( test DWORD PTR K_END, 1)
ASJ( jz, 4, f)
#endif
AS2( movdqu xmm1, XMMWORD_PTR [AS_REG_7+1*16])
AS2( movdqu xmm0, XMMWORD_PTR [AS_REG_7+0*16])
AS2( paddd xmm1, E(0))
AS2( paddd xmm0, A(0))
AS2( movdqu [AS_REG_7+1*16], xmm1)
AS2( movdqu [AS_REG_7+0*16], xmm0)
AS2( cmp WORD_REG(dx), DATA_END)
ATT_NOPREFIX
ASJ( jb, 0, b)
INTEL_NOPREFIX
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASJ( jmp, 5, f)
ASL(4) // non-SSE2
#endif
AS2( add [AS_REG_7+0*4], ecx) // A
AS2( add [AS_REG_7+4*4], edi) // E
AS2( mov eax, B(0))
AS2( mov ebx, C(0))
AS2( mov ecx, D(0))
AS2( add [AS_REG_7+1*4], eax)
AS2( add [AS_REG_7+2*4], ebx)
AS2( add [AS_REG_7+3*4], ecx)
AS2( mov eax, F(0))
AS2( mov ebx, G(0))
AS2( mov ecx, H(0))
AS2( add [AS_REG_7+5*4], eax)
AS2( add [AS_REG_7+6*4], ebx)
AS2( add [AS_REG_7+7*4], ecx)
AS2( mov ecx, AS_REG_7d)
AS2( cmp WORD_REG(dx), DATA_END)
ASJ( jb, 2, b)
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
ASL(5)
#endif
#endif
AS_POP_IF86(sp)
AS_POP_IF86(bp)
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_POP_IF86(bx)
#endif
#ifdef __GNUC__
ATT_PREFIX
:
: "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len)
#if CRYPTOPP_BOOL_X64
, "m" (workspace[0])
#endif
: "memory", "cc", "%eax"
#if CRYPTOPP_BOOL_X64
, "%rbx", "%r8", "%r10"
#endif
);
#endif
}
#endif // (defined(CRYPTOPP_X86_ASM_AVAILABLE))
#undef sum0
#undef sum1
#undef sigma0
#undef sigma1
#define sum0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
#define sum1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
#define sigma0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
#define sigma1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
typedef void (*sha256transformFn)(sha256_ctx* ctx, void* m, uint_64t num_blks);
sha256transformFn sha256transfunc = NULL;
void StdSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t blk;
for (blk = 0; blk < num_blks; blk++)
{
uint_32t W[16];
uint_32t a,b,c,d,e,f,g,h;
uint_32t T1, T2;
int i;
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
int j;
#endif
for (i = 0; i < 64 / 4; i++)
{
W[i] = bswap_32((((const uint_32t*)(mp))[blk * 16 + i]));
}
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
f = ctx->hash[5];
g = ctx->hash[6];
h = ctx->hash[7];
for (i = 0; i <= 63; i+=16)
{
#if defined (TC_WINDOWS_DRIVER) && defined (DEBUG)
for (j = 0; j < 16; j++)
{
COMPRESS_ROUND(i, j, SHA256_K);
}
#else
COMPRESS_ROUND(i, 0, SHA256_K);
COMPRESS_ROUND(i, 1, SHA256_K);
COMPRESS_ROUND(i , 2, SHA256_K);
COMPRESS_ROUND(i, 3, SHA256_K);
COMPRESS_ROUND(i, 4, SHA256_K);
COMPRESS_ROUND(i, 5, SHA256_K);
COMPRESS_ROUND(i, 6, SHA256_K);
COMPRESS_ROUND(i, 7, SHA256_K);
COMPRESS_ROUND(i, 8, SHA256_K);
COMPRESS_ROUND(i, 9, SHA256_K);
COMPRESS_ROUND(i, 10, SHA256_K);
COMPRESS_ROUND(i, 11, SHA256_K);
COMPRESS_ROUND(i, 12, SHA256_K);
COMPRESS_ROUND(i, 13, SHA256_K);
COMPRESS_ROUND(i, 14, SHA256_K);
COMPRESS_ROUND(i, 15, SHA256_K);
#endif
}
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
}
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
void Avx2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha256_rorx(mp, ctx->hash, num_blks);
else
sha256_sse4(mp, ctx->hash, num_blks);
}
void AvxSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
sha256_avx(mp, ctx->hash, num_blks);
else
sha256_sse4(mp, ctx->hash, num_blks);
}
void SSE4Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
sha256_sse4(mp, ctx->hash, num_blks);
}
#endif
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE))
void SSE2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
X86_SHA256_HashBlocks(ctx->hash, (const uint_32t*)mp, (size_t)(num_blks * 64));
}
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
void Sha256AsmTransform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
uint_64t i;
for (i = 0; i < num_blks; i++)
sha256_compress_nayuki(ctx->hash, (uint_8t*)mp + i * 64);
}
#endif
#endif
void sha256_begin(sha256_ctx* ctx)
{
ctx->hash[0] = 0x6a09e667;
ctx->hash[1] = 0xbb67ae85;
ctx->hash[2] = 0x3c6ef372;
ctx->hash[3] = 0xa54ff53a;
ctx->hash[4] = 0x510e527f;
ctx->hash[5] = 0x9b05688c;
ctx->hash[6] = 0x1f83d9ab;
ctx->hash[7] = 0x5be0cd19;
ctx->count[0] = 0;
ctx->count[1] = 0;
if (!sha256transfunc)
{
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
if (g_isIntel && HasSAVX2() && HasSBMI2())
sha256transfunc = Avx2Sha256Transform;
else if (g_isIntel && HasSAVX())
sha256transfunc = AvxSha256Transform;
else if (HasSSE41())
sha256transfunc = SSE4Sha256Transform;
else
#endif
#if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE))
if (HasSSE2 ())
sha256transfunc = SSE2Sha256Transform;
else
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
sha256transfunc = Sha256AsmTransform;
#else
sha256transfunc = StdSha256Transform;
#endif
#else
sha256transfunc = StdSha256Transform;
#endif
}
}
void sha256_end(unsigned char * result, sha256_ctx* ctx)
{
int i;
uint_64t mlen, pos = ctx->count[0];
uint_8t* m = (uint_8t*) ctx->wbuf;
m[pos++] = 0x80;
if (pos > 56)
{
memset(m + pos, 0, (size_t) (64 - pos));
sha256transfunc(ctx, m, 1);
pos = 0;
}
memset(m + pos, 0, (size_t) (56 - pos));
mlen = bswap_64((uint_64t) ctx->count[1]);
memcpy(m + (64 - 8), &mlen, 64 / 8);
sha256transfunc(ctx, m, 1);
for (i = 0; i < 8; i++)
{
ctx->hash[i] = bswap_32(ctx->hash[i]);
}
memcpy(result, ctx->hash, 32);
}
void sha256_hash(const unsigned char * data, uint_32t len, sha256_ctx *ctx)
{
uint_32t pos = ctx->count[0];
uint_32t total = ctx->count[1];
uint_8t* m = (uint_8t*) ctx->wbuf;
if (pos && pos + len >= 64)
{
memcpy(m + pos, data, 64 - pos);
sha256transfunc(ctx, m, 1);
len -= 64 - pos;
total += (64 - pos) * 8;
data += 64 - pos;
pos = 0;
}
if (len >= 64)
{
uint_32t blocks = len / 64;
uint_32t bytes = blocks * 64;
sha256transfunc(ctx, (void*)data, blocks);
len -= bytes;
total += (bytes)* 8;
data += bytes;
}
memcpy(m+pos, data, len);
pos += len;
total += len * 8;
ctx->count[0] = pos;
ctx->count[1] = total;
}
void sha256(unsigned char * result, const unsigned char* source, uint_32t sourceLen)
{
sha256_ctx ctx;
sha256_begin(&ctx);
sha256_hash(source, sourceLen, &ctx);
sha256_end(result, &ctx);
}