VeraCrypt/src/Crypto/t1ha.h

262 lines
10 KiB
C

/*
* Copyright (c) 2016-2018 Positive Technologies, https://www.ptsecurity.com,
* Fast Positive Hash.
*
* Portions Copyright (c) 2010-2018 Leonid Yuriev <leo@yuriev.ru>,
* The 1Hippeus project (t1h).
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/*
* t1ha = { Fast Positive Hash, aka "Позитивный Хэш" }
* by [Positive Technologies](https://www.ptsecurity.ru)
*
* Briefly, it is a 64-bit Hash Function:
* 1. Created for 64-bit little-endian platforms, in predominantly for x86_64,
* but portable and without penalties it can run on any 64-bit CPU.
* 2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash
* and all others portable hash-functions (which do not use specific
* hardware tricks).
* 3. Not suitable for cryptography.
*
* The Future will Positive. Всё будет хорошо.
*
* ACKNOWLEDGEMENT:
* The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев)
* for The 1Hippeus project - zerocopy messaging in the spirit of Sparta!
*/
#pragma once
/*****************************************************************************
*
* PLEASE PAY ATTENTION TO THE FOLLOWING NOTES
* about macros definitions which controls t1ha behaviour and/or performance.
*
*
* 1) T1HA_SYS_UNALIGNED_ACCESS = Defines the system/platform/CPU/architecture
* abilities for unaligned data access.
*
* By default, when the T1HA_SYS_UNALIGNED_ACCESS not defined,
* it will defined on the basis hardcoded knowledge about of capabilities
* of most common CPU architectures. But you could override this
* default behavior when build t1ha library itself:
*
* // To disable unaligned access at all.
* #define T1HA_SYS_UNALIGNED_ACCESS 0
*
* // To enable unaligned access, but indicate that it significally slow.
* #define T1HA_SYS_UNALIGNED_ACCESS 1
*
* // To enable unaligned access, and indicate that it effecient.
* #define T1HA_SYS_UNALIGNED_ACCESS 2
*
*
* 2) T1HA_USE_FAST_ONESHOT_READ = Controls the data reads at the end of buffer.
*
* When defined to non-zero, t1ha will use 'one shot' method for reading
* up to 8 bytes at the end of data. In this case just the one 64-bit read
* will be performed even when the available less than 8 bytes.
*
* This is little bit faster that switching by length of data tail.
* Unfortunately this will triggering a false-positive alarms from Valgrind,
* AddressSanitizer and other similar tool.
*
* By default, t1ha defines it to 1, but you could override this
* default behavior when build t1ha library itself:
*
* // For little bit faster and small code.
* #define T1HA_USE_FAST_ONESHOT_READ 1
*
* // For calmness if doubt.
* #define T1HA_USE_FAST_ONESHOT_READ 0
*
*
* 3) T1HA0_RUNTIME_SELECT = Controls choice fastest function in runtime.
*
* t1ha library offers the t1ha0() function as the fastest for current CPU.
* But actual CPU's features/capabilities and may be significantly different,
* especially on x86 platform. Therefore, internally, t1ha0() may require
* dynamic dispatching for choice best implementation.
*
* By default, t1ha enables such runtime choice and (may be) corresponding
* indirect calls if it reasonable, but you could override this default
* behavior when build t1ha library itself:
*
* // To enable runtime choice of fastest implementation.
* #define T1HA0_RUNTIME_SELECT 1
*
* // To disable runtime choice of fastest implementation.
* #define T1HA0_RUNTIME_SELECT 0
*
* When T1HA0_RUNTIME_SELECT is nonzero the t1ha0_resolve() function could
* be used to get actual t1ha0() implementation address at runtime. This is
* useful for two cases:
* - calling by local pointer-to-function usually is little
* bit faster (less overhead) than via a PLT thru the DSO boundary.
* - GNU Indirect functions (see below) don't supported by environment
* and calling by t1ha0_funcptr is not available and/or expensive.
*
* 4) T1HA_USE_INDIRECT_FUNCTIONS = Controls usage of GNU Indirect functions.
*
* In continue of T1HA0_RUNTIME_SELECT the T1HA_USE_INDIRECT_FUNCTIONS
* controls usage of ELF indirect functions feature. In general, when
* available, this reduces overhead of indirect function's calls though
* a DSO-bundary (https://sourceware.org/glibc/wiki/GNU_IFUNC).
*
* By default, t1ha engage GNU Indirect functions when it available
* and useful, but you could override this default behavior when build
* t1ha library itself:
*
* // To enable use of GNU ELF Indirect functions.
* #define T1HA_USE_INDIRECT_FUNCTIONS 1
*
* // To disable use of GNU ELF Indirect functions. This may be useful
* // if the actual toolchain or the system's loader don't support ones.
* #define T1HA_USE_INDIRECT_FUNCTIONS 0
*
* 5) T1HA0_AESNI_AVAILABLE = Controls AES-NI detection and dispatching on x86.
*
* In continue of T1HA0_RUNTIME_SELECT the T1HA0_AESNI_AVAILABLE controls
* detection and usage of AES-NI CPU's feature. On the other hand, this
* requires compiling parts of t1ha library with certain properly options,
* and could be difficult or inconvenient in some cases.
*
* By default, t1ha engade AES-NI for t1ha0() on the x86 platform, but
* you could override this default behavior when build t1ha library itself:
*
* // To disable detection and usage of AES-NI instructions for t1ha0().
* // This may be useful when you unable to build t1ha library properly
* // or known that AES-NI will be unavailable at the deploy.
* #define T1HA0_AESNI_AVAILABLE 0
*
* // To force detection and usage of AES-NI instructions for t1ha0(),
* // but I don't known reasons to anybody would need this.
* #define T1HA0_AESNI_AVAILABLE 1
*
* 6) T1HA0_DISABLED, T1HA1_DISABLED, T1HA2_DISABLED = Controls availability of
* t1ha functions.
*
* In some cases could be useful to import/use only few of t1ha functions
* or just the one. So, this definitions allows disable corresponding parts
* of t1ha library.
*
* // To disable t1ha0(), t1ha0_32le(), t1ha0_32be() and all AES-NI.
* #define T1HA0_DISABLED
*
* // To disable t1ha1_le() and t1ha1_be().
* #define T1HA1_DISABLED
*
* // To disable t1ha2_atonce(), t1ha2_atonce128() and so on.
* #define T1HA2_DISABLED
*
*****************************************************************************/
#define T1HA_VERSION_MAJOR 2
#define T1HA_VERSION_MINOR 1
#define T1HA_VERSION_RELEASE 0
#include "Common/Tcdefs.h"
#include "config.h"
#include "misc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define T1HA_ALIGN_PREFIX CRYPTOPP_ALIGN_DATA(32)
#define T1HA_ALIGN_SUFFIX
#ifdef _MSC_VER
#define uint8_t byte
#define uint16_t uint16
#define uint32_t uint32
#define uint64_t uint64
#endif
typedef union T1HA_ALIGN_PREFIX t1ha_state256 {
uint8_t bytes[32];
uint32_t u32[8];
uint64_t u64[4];
struct {
uint64_t a, b, c, d;
} n;
} t1ha_state256_t T1HA_ALIGN_SUFFIX;
typedef struct t1ha_context {
t1ha_state256_t state;
t1ha_state256_t buffer;
size_t partial;
uint64_t total;
} t1ha_context_t;
/******************************************************************************
*
* t1ha2 = 64 and 128-bit, SLIGHTLY MORE ATTENTION FOR QUALITY AND STRENGTH.
*
* - The recommended version of "Fast Positive Hash" with good quality
* for checksum, hash tables and fingerprinting.
* - Portable and extremely efficiency on modern 64-bit CPUs.
* Designed for 64-bit little-endian platforms,
* in other cases will runs slowly.
* - Great quality of hashing and still faster than other non-t1ha hashes.
* Provides streaming mode and 128-bit result.
*
* Note: Due performance reason 64- and 128-bit results are completely
* different each other, i.e. 64-bit result is NOT any part of 128-bit.
*/
/* The at-once variant with 64-bit result */
uint64_t t1ha2_atonce(const void *data, size_t length, uint64_t seed);
/* The at-once variant with 128-bit result.
* Argument `extra_result` is NOT optional and MUST be valid.
* The high 64-bit part of 128-bit hash will be always unconditionally
* stored to the address given by `extra_result` argument. */
uint64_t t1ha2_atonce128(uint64_t *__restrict extra_result,
const void *__restrict data, size_t length,
uint64_t seed);
/* The init/update/final trinity for streaming.
* Return 64 or 128-bit result depentently from `extra_result` argument. */
void t1ha2_init(t1ha_context_t *ctx, uint64_t seed_x, uint64_t seed_y);
void t1ha2_update(t1ha_context_t *__restrict ctx,
const void *__restrict data, size_t length);
/* Argument `extra_result` is optional and MAY be NULL.
* - If `extra_result` is NOT NULL then the 128-bit hash will be calculated,
* and high 64-bit part of it will be stored to the address given
* by `extra_result` argument.
* - Otherwise the 64-bit hash will be calculated
* and returned from function directly.
*
* Note: Due performance reason 64- and 128-bit results are completely
* different each other, i.e. 64-bit result is NOT any part of 128-bit. */
uint64_t t1ha2_final(t1ha_context_t *__restrict ctx,
uint64_t *__restrict extra_result /* optional */);
int t1ha_selfcheck__t1ha2_atonce(void);
int t1ha_selfcheck__t1ha2_atonce128(void);
int t1ha_selfcheck__t1ha2_stream(void);
int t1ha_selfcheck__t1ha2(void);
#ifdef __cplusplus
}
#endif