VeraCrypt/src/Driver/EncryptedIoQueue.c

1170 lines
36 KiB
C

/*
Derived from source code of TrueCrypt 7.1a, which is
Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
by the TrueCrypt License 3.0.
Modifications and additions to the original source code (contained in this file)
and all other portions of this file are Copyright (c) 2013-2017 IDRIX
and are governed by the Apache License 2.0 the full text of which is
contained in the file License.txt included in VeraCrypt binary and source
code distribution packages.
*/
#include "TCdefs.h"
#include "Apidrvr.h"
#include "Ntdriver.h"
#include "DriveFilter.h"
#include "EncryptedIoQueue.h"
#include "EncryptionThreadPool.h"
#include "Volumes.h"
#include <IntSafe.h>
static void AcquireBufferPoolMutex (EncryptedIoQueue *queue)
{
NTSTATUS status;
status = KeWaitForMutexObject (&queue->BufferPoolMutex, Executive, KernelMode, FALSE, NULL);
if (!NT_SUCCESS (status))
TC_BUG_CHECK (status);
}
static void ReleaseBufferPoolMutex (EncryptedIoQueue *queue)
{
KeReleaseMutex (&queue->BufferPoolMutex, FALSE);
}
static void *GetPoolBuffer (EncryptedIoQueue *queue, ULONG requestedSize)
{
EncryptedIoQueueBuffer *buffer;
void *bufferAddress = NULL;
BOOL requestedSizePresentInPool = FALSE;
while (TRUE)
{
AcquireBufferPoolMutex (queue);
for (buffer = queue->FirstPoolBuffer; ; buffer = buffer->NextBuffer)
{
if (buffer && buffer->Size == requestedSize)
{
requestedSizePresentInPool = TRUE;
if (!buffer->InUse)
{
// Reuse a free buffer
buffer->InUse = TRUE;
bufferAddress = buffer->Address;
break;
}
}
if (!buffer || !buffer->NextBuffer)
{
EncryptedIoQueueBuffer *newBuffer;
if (requestedSizePresentInPool && !queue->StartPending)
break;
// Allocate a new buffer
newBuffer = TCalloc (sizeof (EncryptedIoQueueBuffer));
if (!newBuffer)
{
bufferAddress = NULL;
break;
}
bufferAddress = TCalloc (requestedSize);
if (bufferAddress)
{
newBuffer->NextBuffer = NULL;
newBuffer->Address = bufferAddress;
newBuffer->Size = requestedSize;
newBuffer->InUse = TRUE;
if (!buffer)
queue->FirstPoolBuffer = newBuffer;
else
buffer->NextBuffer = newBuffer;
}
else
TCfree (newBuffer);
break;
}
}
ReleaseBufferPoolMutex (queue);
if (bufferAddress || !requestedSizePresentInPool || queue->StartPending)
break;
KeWaitForSingleObject (&queue->PoolBufferFreeEvent, Executive, KernelMode, FALSE, NULL);
}
return bufferAddress;
}
static void ReleasePoolBuffer (EncryptedIoQueue *queue, void *address)
{
EncryptedIoQueueBuffer *buffer;
AcquireBufferPoolMutex (queue);
for (buffer = queue->FirstPoolBuffer; buffer != NULL; buffer = buffer->NextBuffer)
{
if (buffer->Address == address)
{
ASSERT (buffer->InUse);
buffer->InUse = FALSE;
break;
}
}
ReleaseBufferPoolMutex (queue);
KeSetEvent (&queue->PoolBufferFreeEvent, IO_DISK_INCREMENT, FALSE);
}
static void FreePoolBuffers (EncryptedIoQueue *queue)
{
EncryptedIoQueueBuffer *buffer;
AcquireBufferPoolMutex (queue);
for (buffer = queue->FirstPoolBuffer; buffer != NULL; )
{
EncryptedIoQueueBuffer *nextBuffer = buffer->NextBuffer;
ASSERT (!buffer->InUse || queue->StartPending);
TCfree (buffer->Address);
TCfree (buffer);
buffer = nextBuffer;
}
queue->FirstPoolBuffer = NULL;
ReleaseBufferPoolMutex (queue);
}
static void DecrementOutstandingIoCount (EncryptedIoQueue *queue)
{
if (InterlockedDecrement (&queue->OutstandingIoCount) == 0 && (queue->SuspendPending || queue->StopPending))
KeSetEvent (&queue->NoOutstandingIoEvent, IO_DISK_INCREMENT, FALSE);
}
static void OnItemCompleted (EncryptedIoQueueItem *item, BOOL freeItem)
{
DecrementOutstandingIoCount (item->Queue);
IoReleaseRemoveLock (&item->Queue->RemoveLock, item->OriginalIrp);
if (NT_SUCCESS (item->Status))
{
if (item->Write)
item->Queue->TotalBytesWritten += item->OriginalLength;
else
item->Queue->TotalBytesRead += item->OriginalLength;
}
if (freeItem)
ReleasePoolBuffer (item->Queue, item);
}
static NTSTATUS CompleteOriginalIrp (EncryptedIoQueueItem *item, NTSTATUS status, ULONG_PTR information)
{
#ifdef TC_TRACE_IO_QUEUE
Dump ("< %I64d [%I64d] %c status=%x info=%I64d\n", item->OriginalIrpOffset, GetElapsedTime (&item->Queue->LastPerformanceCounter), item->Write ? 'W' : 'R', status, (int64) information);
#endif
TCCompleteDiskIrp (item->OriginalIrp, status, information);
item->Status = status;
OnItemCompleted (item, TRUE);
return status;
}
static void AcquireFragmentBuffer (EncryptedIoQueue *queue, byte *buffer)
{
NTSTATUS status = STATUS_INVALID_PARAMETER;
if (buffer == queue->FragmentBufferA)
{
status = KeWaitForSingleObject (&queue->FragmentBufferAFreeEvent, Executive, KernelMode, FALSE, NULL);
}
else if (buffer == queue->FragmentBufferB)
{
status = KeWaitForSingleObject (&queue->FragmentBufferBFreeEvent, Executive, KernelMode, FALSE, NULL);
}
if (!NT_SUCCESS (status))
TC_BUG_CHECK (status);
}
static void ReleaseFragmentBuffer (EncryptedIoQueue *queue, byte *buffer)
{
if (buffer == queue->FragmentBufferA)
{
KeSetEvent (&queue->FragmentBufferAFreeEvent, IO_DISK_INCREMENT, FALSE);
}
else if (buffer == queue->FragmentBufferB)
{
KeSetEvent (&queue->FragmentBufferBFreeEvent, IO_DISK_INCREMENT, FALSE);
}
else
{
TC_BUG_CHECK (STATUS_INVALID_PARAMETER);
}
}
BOOL
UpdateBuffer(
byte* buffer,
byte* secRegion,
uint64 bufferDiskOffset,
uint32 bufferLength,
BOOL doUpadte
)
{
uint64 intersectStart;
uint32 intersectLength;
uint32 i;
DCS_DISK_ENTRY_LIST *DeList = (DCS_DISK_ENTRY_LIST*)(secRegion + 512);
BOOL updated = FALSE;
if (secRegion == NULL) return FALSE;
for (i = 0; i < DeList->Count; ++i) {
if (DeList->DE[i].Type == DE_Sectors) {
GetIntersection(
bufferDiskOffset, bufferLength,
DeList->DE[i].Sectors.Start, DeList->DE[i].Sectors.Start + DeList->DE[i].Sectors.Length - 1,
&intersectStart, &intersectLength
);
if (intersectLength != 0) {
updated = TRUE;
if(doUpadte && buffer != NULL) {
// Dump("Subst data\n");
memcpy(
buffer + (intersectStart - bufferDiskOffset),
secRegion + DeList->DE[i].Sectors.Offset + (intersectStart - DeList->DE[i].Sectors.Start),
intersectLength
);
} else {
return TRUE;
}
}
}
}
return updated;
}
static VOID CompletionThreadProc (PVOID threadArg)
{
EncryptedIoQueue *queue = (EncryptedIoQueue *) threadArg;
PLIST_ENTRY listEntry;
EncryptedIoRequest *request;
UINT64_STRUCT dataUnit;
if (IsEncryptionThreadPoolRunning())
KeSetPriorityThread (KeGetCurrentThread(), LOW_REALTIME_PRIORITY);
while (!queue->ThreadExitRequested)
{
if (!NT_SUCCESS (KeWaitForSingleObject (&queue->CompletionThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL)))
continue;
if (queue->ThreadExitRequested)
break;
while ((listEntry = ExInterlockedRemoveHeadList (&queue->CompletionThreadQueue, &queue->CompletionThreadQueueLock)))
{
request = CONTAINING_RECORD (listEntry, EncryptedIoRequest, CompletionListEntry);
if (request->EncryptedLength > 0 && NT_SUCCESS (request->Item->Status))
{
ASSERT (request->EncryptedOffset + request->EncryptedLength <= request->Offset.QuadPart + request->Length);
dataUnit.Value = (request->Offset.QuadPart + request->EncryptedOffset) / ENCRYPTION_DATA_UNIT_SIZE;
if (queue->CryptoInfo->bPartitionInInactiveSysEncScope)
dataUnit.Value += queue->CryptoInfo->FirstDataUnitNo.Value;
else if (queue->RemapEncryptedArea)
dataUnit.Value += queue->RemappedAreaDataUnitOffset;
DecryptDataUnits (request->Data + request->EncryptedOffset, &dataUnit, request->EncryptedLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo);
}
// Dump("Read sector %lld count %d\n", request->Offset.QuadPart >> 9, request->Length >> 9);
// Update subst sectors
if((queue->SecRegionData != NULL) && (queue->SecRegionSize > 512)) {
UpdateBuffer(request->Data, queue->SecRegionData, request->Offset.QuadPart, request->Length, TRUE);
}
if (request->CompleteOriginalIrp)
{
CompleteOriginalIrp (request->Item, request->Item->Status,
NT_SUCCESS (request->Item->Status) ? request->Item->OriginalLength : 0);
}
ReleasePoolBuffer (queue, request);
}
}
PsTerminateSystemThread (STATUS_SUCCESS);
}
static NTSTATUS TCCachedRead (EncryptedIoQueue *queue, IO_STATUS_BLOCK *ioStatus, PVOID buffer, LARGE_INTEGER offset, ULONG length)
{
queue->LastReadOffset = offset;
queue->LastReadLength = length;
if (queue->ReadAheadBufferValid && queue->ReadAheadOffset.QuadPart == offset.QuadPart && queue->ReadAheadLength >= length)
{
memcpy (buffer, queue->ReadAheadBuffer, length);
if (!queue->IsFilterDevice)
{
ioStatus->Information = length;
ioStatus->Status = STATUS_SUCCESS;
}
return STATUS_SUCCESS;
}
if (queue->IsFilterDevice)
return TCReadDevice (queue->LowerDeviceObject, buffer, offset, length);
return ZwReadFile (queue->HostFileHandle, NULL, NULL, NULL, ioStatus, buffer, length, &offset, NULL);
}
static VOID IoThreadProc (PVOID threadArg)
{
EncryptedIoQueue *queue = (EncryptedIoQueue *) threadArg;
PLIST_ENTRY listEntry;
EncryptedIoRequest *request;
KeSetPriorityThread (KeGetCurrentThread(), LOW_REALTIME_PRIORITY);
if (!queue->IsFilterDevice && queue->SecurityClientContext)
{
#ifdef DEBUG
NTSTATUS status =
#endif
SeImpersonateClientEx (queue->SecurityClientContext, NULL);
ASSERT (NT_SUCCESS (status));
}
while (!queue->ThreadExitRequested)
{
if (!NT_SUCCESS (KeWaitForSingleObject (&queue->IoThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL)))
continue;
if (queue->ThreadExitRequested)
break;
while ((listEntry = ExInterlockedRemoveHeadList (&queue->IoThreadQueue, &queue->IoThreadQueueLock)))
{
InterlockedDecrement (&queue->IoThreadPendingRequestCount);
request = CONTAINING_RECORD (listEntry, EncryptedIoRequest, ListEntry);
#ifdef TC_TRACE_IO_QUEUE
Dump ("%c %I64d [%I64d] roff=%I64d rlen=%d\n", request->Item->Write ? 'W' : 'R', request->Item->OriginalIrpOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), request->Offset.QuadPart, request->Length);
#endif
// Perform IO request if no preceding request of the item failed
if (NT_SUCCESS (request->Item->Status))
{
if (queue->ThreadBlockReadWrite)
request->Item->Status = STATUS_DEVICE_BUSY;
else if (queue->IsFilterDevice)
{
if (queue->RemapEncryptedArea && request->EncryptedLength > 0)
{
if (request->EncryptedLength != request->Length)
{
// Up to three subfragments may be required to handle a partially remapped fragment
int subFragment;
byte *subFragmentData = request->Data;
for (subFragment = 0 ; subFragment < 3; ++subFragment)
{
LARGE_INTEGER subFragmentOffset;
ULONG subFragmentLength = 0;
subFragmentOffset.QuadPart = request->Offset.QuadPart;
switch (subFragment)
{
case 0:
subFragmentLength = (ULONG) request->EncryptedOffset;
break;
case 1:
subFragmentOffset.QuadPart += request->EncryptedOffset + queue->RemappedAreaOffset;
subFragmentLength = request->EncryptedLength;
break;
case 2:
subFragmentOffset.QuadPart += request->EncryptedOffset + request->EncryptedLength;
subFragmentLength = (ULONG) (request->Length - (request->EncryptedOffset + request->EncryptedLength));
break;
}
if (subFragmentLength > 0)
{
if (request->Item->Write)
request->Item->Status = TCWriteDevice (queue->LowerDeviceObject, subFragmentData, subFragmentOffset, subFragmentLength);
else
request->Item->Status = TCCachedRead (queue, NULL, subFragmentData, subFragmentOffset, subFragmentLength);
subFragmentData += subFragmentLength;
}
}
}
else
{
// Remap the fragment
LARGE_INTEGER remappedOffset;
remappedOffset.QuadPart = request->Offset.QuadPart + queue->RemappedAreaOffset;
if (request->Item->Write)
request->Item->Status = TCWriteDevice (queue->LowerDeviceObject, request->Data, remappedOffset, request->Length);
else
request->Item->Status = TCCachedRead (queue, NULL, request->Data, remappedOffset, request->Length);
}
}
else
{
if (request->Item->Write)
request->Item->Status = TCWriteDevice (queue->LowerDeviceObject, request->Data, request->Offset, request->Length);
else
request->Item->Status = TCCachedRead (queue, NULL, request->Data, request->Offset, request->Length);
}
}
else
{
IO_STATUS_BLOCK ioStatus;
if (request->Item->Write)
request->Item->Status = ZwWriteFile (queue->HostFileHandle, NULL, NULL, NULL, &ioStatus, request->Data, request->Length, &request->Offset, NULL);
else
request->Item->Status = TCCachedRead (queue, &ioStatus, request->Data, request->Offset, request->Length);
if (NT_SUCCESS (request->Item->Status) && ioStatus.Information != request->Length)
request->Item->Status = STATUS_END_OF_FILE;
}
}
if (request->Item->Write)
{
queue->ReadAheadBufferValid = FALSE;
ReleaseFragmentBuffer (queue, request->Data);
if (request->CompleteOriginalIrp)
{
CompleteOriginalIrp (request->Item, request->Item->Status,
NT_SUCCESS (request->Item->Status) ? request->Item->OriginalLength : 0);
}
ReleasePoolBuffer (queue, request);
}
else
{
BOOL readAhead = FALSE;
if (NT_SUCCESS (request->Item->Status))
memcpy (request->OrigDataBufferFragment, request->Data, request->Length);
ReleaseFragmentBuffer (queue, request->Data);
request->Data = request->OrigDataBufferFragment;
if (request->CompleteOriginalIrp
&& queue->LastReadLength > 0
&& NT_SUCCESS (request->Item->Status)
&& InterlockedExchangeAdd (&queue->IoThreadPendingRequestCount, 0) == 0)
{
readAhead = TRUE;
InterlockedIncrement (&queue->OutstandingIoCount);
}
ExInterlockedInsertTailList (&queue->CompletionThreadQueue, &request->CompletionListEntry, &queue->CompletionThreadQueueLock);
KeSetEvent (&queue->CompletionThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE);
if (readAhead)
{
queue->ReadAheadBufferValid = FALSE;
queue->ReadAheadOffset.QuadPart = queue->LastReadOffset.QuadPart + queue->LastReadLength;
queue->ReadAheadLength = queue->LastReadLength;
if (queue->ReadAheadOffset.QuadPart + queue->ReadAheadLength <= queue->MaxReadAheadOffset.QuadPart)
{
#ifdef TC_TRACE_IO_QUEUE
Dump ("A %I64d [%I64d] roff=%I64d rlen=%d\n", request->Item->OriginalIrpOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), queue->ReadAheadOffset, queue->ReadAheadLength);
#endif
if (queue->IsFilterDevice)
{
queue->ReadAheadBufferValid = NT_SUCCESS (TCReadDevice (queue->LowerDeviceObject, queue->ReadAheadBuffer, queue->ReadAheadOffset, queue->ReadAheadLength));
}
else
{
IO_STATUS_BLOCK ioStatus;
queue->ReadAheadBufferValid = NT_SUCCESS (ZwReadFile (queue->HostFileHandle, NULL, NULL, NULL, &ioStatus, queue->ReadAheadBuffer, queue->ReadAheadLength, &queue->ReadAheadOffset, NULL));
queue->ReadAheadLength = (ULONG) ioStatus.Information;
}
}
DecrementOutstandingIoCount (queue);
}
}
}
}
PsTerminateSystemThread (STATUS_SUCCESS);
}
static VOID MainThreadProc (PVOID threadArg)
{
EncryptedIoQueue *queue = (EncryptedIoQueue *) threadArg;
PLIST_ENTRY listEntry;
EncryptedIoQueueItem *item;
LARGE_INTEGER fragmentOffset;
ULONG dataRemaining;
PUCHAR activeFragmentBuffer = queue->FragmentBufferA;
PUCHAR dataBuffer;
EncryptedIoRequest *request;
uint64 intersectStart;
uint32 intersectLength;
ULONGLONG addResult;
HRESULT hResult;
if (IsEncryptionThreadPoolRunning())
KeSetPriorityThread (KeGetCurrentThread(), LOW_REALTIME_PRIORITY);
while (!queue->ThreadExitRequested)
{
if (!NT_SUCCESS (KeWaitForSingleObject (&queue->MainThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL)))
continue;
while ((listEntry = ExInterlockedRemoveHeadList (&queue->MainThreadQueue, &queue->MainThreadQueueLock)))
{
PIRP irp = CONTAINING_RECORD (listEntry, IRP, Tail.Overlay.ListEntry);
PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation (irp);
if (queue->Suspended)
KeWaitForSingleObject (&queue->QueueResumedEvent, Executive, KernelMode, FALSE, NULL);
item = GetPoolBuffer (queue, sizeof (EncryptedIoQueueItem));
if (!item)
{
TCCompleteDiskIrp (irp, STATUS_INSUFFICIENT_RESOURCES, 0);
DecrementOutstandingIoCount (queue);
IoReleaseRemoveLock (&queue->RemoveLock, irp);
continue;
}
item->Queue = queue;
item->OriginalIrp = irp;
item->Status = STATUS_SUCCESS;
IoSetCancelRoutine (irp, NULL);
if (irp->Cancel)
{
CompleteOriginalIrp (item, STATUS_CANCELLED, 0);
continue;
}
switch (irpSp->MajorFunction)
{
case IRP_MJ_READ:
item->Write = FALSE;
item->OriginalOffset = irpSp->Parameters.Read.ByteOffset;
item->OriginalLength = irpSp->Parameters.Read.Length;
break;
case IRP_MJ_WRITE:
item->Write = TRUE;
item->OriginalOffset = irpSp->Parameters.Write.ByteOffset;
item->OriginalLength = irpSp->Parameters.Write.Length;
break;
default:
CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;
}
#ifdef TC_TRACE_IO_QUEUE
item->OriginalIrpOffset = item->OriginalOffset;
#endif
// Handle misaligned read operations to work around a bug in Windows System Assessment Tool which does not follow FILE_FLAG_NO_BUFFERING requirements when benchmarking disk devices
if (queue->IsFilterDevice
&& !item->Write
&& item->OriginalLength > 0
&& (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) == 0
&& (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0)
{
byte *buffer;
ULONG alignedLength;
LARGE_INTEGER alignedOffset;
hResult = ULongAdd(item->OriginalLength, ENCRYPTION_DATA_UNIT_SIZE, &alignedLength);
if (hResult != S_OK)
{
CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;
}
alignedOffset.QuadPart = item->OriginalOffset.QuadPart & ~((LONGLONG) ENCRYPTION_DATA_UNIT_SIZE - 1);
buffer = TCalloc (alignedLength);
if (!buffer)
{
CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0);
continue;
}
item->Status = TCReadDevice (queue->LowerDeviceObject, buffer, alignedOffset, alignedLength);
if (NT_SUCCESS (item->Status))
{
UINT64_STRUCT dataUnit;
dataBuffer = (PUCHAR) MmGetSystemAddressForMdlSafe (irp->MdlAddress, (HighPagePriority | ExDefaultMdlProtection));
if (!dataBuffer)
{
TCfree (buffer);
CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0);
continue;
}
if (queue->EncryptedAreaStart != -1 && queue->EncryptedAreaEnd != -1)
{
GetIntersection (alignedOffset.QuadPart, alignedLength, queue->EncryptedAreaStart, queue->EncryptedAreaEnd, &intersectStart, &intersectLength);
if (intersectLength > 0)
{
dataUnit.Value = intersectStart / ENCRYPTION_DATA_UNIT_SIZE;
DecryptDataUnits (buffer + (intersectStart - alignedOffset.QuadPart), &dataUnit, intersectLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo);
}
}
// Update subst sectors
if((queue->SecRegionData != NULL) && (queue->SecRegionSize > 512)) {
UpdateBuffer(buffer, queue->SecRegionData, alignedOffset.QuadPart, alignedLength, TRUE);
}
memcpy (dataBuffer, buffer + (item->OriginalOffset.LowPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)), item->OriginalLength);
}
TCfree (buffer);
CompleteOriginalIrp (item, item->Status, NT_SUCCESS (item->Status) ? item->OriginalLength : 0);
continue;
}
// Validate offset and length
if (item->OriginalLength == 0
|| (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0
|| (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0
|| ( !queue->IsFilterDevice &&
( (S_OK != ULongLongAdd(item->OriginalOffset.QuadPart, item->OriginalLength, &addResult))
|| (addResult > (ULONGLONG) queue->VirtualDeviceLength)
)
)
)
{
CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;
}
#ifdef TC_TRACE_IO_QUEUE
Dump ("Q %I64d [%I64d] %c len=%d\n", item->OriginalOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), item->Write ? 'W' : 'R', item->OriginalLength);
#endif
if (!queue->IsFilterDevice)
{
// Adjust the offset for host file or device
if (queue->CryptoInfo->hiddenVolume)
hResult = ULongLongAdd(item->OriginalOffset.QuadPart, queue->CryptoInfo->hiddenVolumeOffset, &addResult);
else
hResult = ULongLongAdd(item->OriginalOffset.QuadPart, queue->CryptoInfo->volDataAreaOffset, &addResult);
if (hResult != S_OK)
{
CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;
}
else
item->OriginalOffset.QuadPart = addResult;
// Hidden volume protection
if (item->Write && queue->CryptoInfo->bProtectHiddenVolume)
{
// If there has already been a write operation denied in order to protect the
// hidden volume (since the volume mount time)
if (queue->CryptoInfo->bHiddenVolProtectionAction)
{
// Do not allow writing to this volume anymore. This is to fake a complete volume
// or system failure (otherwise certain kinds of inconsistency within the file
// system could indicate that this volume has used hidden volume protection).
CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;
}
// Verify that no byte is going to be written to the hidden volume area
if (RegionsOverlap ((unsigned __int64) item->OriginalOffset.QuadPart,
(unsigned __int64) item->OriginalOffset.QuadPart + item->OriginalLength - 1,
queue->CryptoInfo->hiddenVolumeOffset,
(unsigned __int64) queue->CryptoInfo->hiddenVolumeOffset + queue->CryptoInfo->hiddenVolumeProtectedSize - 1))
{
Dump ("Hidden volume protection triggered: write %I64d-%I64d (protected %I64d-%I64d)\n", item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, queue->CryptoInfo->hiddenVolumeOffset, queue->CryptoInfo->hiddenVolumeOffset + queue->CryptoInfo->hiddenVolumeProtectedSize - 1);
queue->CryptoInfo->bHiddenVolProtectionAction = TRUE;
// Deny this write operation to prevent the hidden volume from being overwritten
CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;
}
}
}
else if (item->Write
&& RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET, TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET + TC_BOOT_ENCRYPTION_VOLUME_HEADER_SIZE - 1))
{
// Prevent inappropriately designed software from damaging important data that may be out of sync with the backup on the Rescue Disk (such as the end of the encrypted area).
Dump ("Preventing write to the system encryption key data area\n");
CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0);
continue;
}
else if (item->Write && IsHiddenSystemRunning()
&& (RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, TC_SECTOR_SIZE_BIOS, TC_BOOT_LOADER_AREA_SECTOR_COUNT * TC_SECTOR_SIZE_BIOS - 1)
|| RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, GetBootDriveLength(), _I64_MAX)))
{
Dump ("Preventing write to boot loader or host protected area\n");
CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0);
continue;
}
else if (item->Write
&& (queue->SecRegionData != NULL) && (queue->SecRegionSize > 512)
&& UpdateBuffer (NULL, queue->SecRegionData, item->OriginalOffset.QuadPart, (uint32)(item->OriginalOffset.QuadPart + item->OriginalLength - 1), FALSE))
{
// Prevent inappropriately designed software from damaging important data
Dump ("Preventing write to the system GPT area\n");
CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0);
continue;
}
dataBuffer = (PUCHAR) MmGetSystemAddressForMdlSafe (irp->MdlAddress, (HighPagePriority | ExDefaultMdlProtection));
if (dataBuffer == NULL)
{
CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0);
continue;
}
// Divide data block to fragments to enable efficient overlapping of encryption and IO operations
dataRemaining = item->OriginalLength;
fragmentOffset = item->OriginalOffset;
while (dataRemaining > 0)
{
ULONG queueFragmentSize = queue->FragmentSize;
BOOL isLastFragment = dataRemaining <= queueFragmentSize;
ULONG dataFragmentLength = isLastFragment ? dataRemaining : queueFragmentSize;
activeFragmentBuffer = (activeFragmentBuffer == queue->FragmentBufferA ? queue->FragmentBufferB : queue->FragmentBufferA);
InterlockedIncrement (&queue->IoThreadPendingRequestCount);
// Create IO request
request = GetPoolBuffer (queue, sizeof (EncryptedIoRequest));
if (!request)
{
CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0);
break;
}
request->Item = item;
request->CompleteOriginalIrp = isLastFragment;
request->Offset = fragmentOffset;
request->Data = activeFragmentBuffer;
request->OrigDataBufferFragment = dataBuffer;
request->Length = dataFragmentLength;
if (queue->IsFilterDevice || queue->bSupportPartialEncryption)
{
if (queue->EncryptedAreaStart == -1 || queue->EncryptedAreaEnd == -1)
{
request->EncryptedLength = 0;
}
else
{
// Get intersection of data fragment with encrypted area
GetIntersection (fragmentOffset.QuadPart, dataFragmentLength, queue->EncryptedAreaStart, queue->EncryptedAreaEnd, &intersectStart, &intersectLength);
request->EncryptedOffset = intersectStart - fragmentOffset.QuadPart;
request->EncryptedLength = intersectLength;
}
}
else
{
request->EncryptedOffset = 0;
request->EncryptedLength = dataFragmentLength;
}
AcquireFragmentBuffer (queue, activeFragmentBuffer);
if (item->Write)
{
// Encrypt data
memcpy (activeFragmentBuffer, dataBuffer, dataFragmentLength);
if (request->EncryptedLength > 0)
{
UINT64_STRUCT dataUnit;
ASSERT (request->EncryptedOffset + request->EncryptedLength <= request->Offset.QuadPart + request->Length);
dataUnit.Value = (request->Offset.QuadPart + request->EncryptedOffset) / ENCRYPTION_DATA_UNIT_SIZE;
if (queue->CryptoInfo->bPartitionInInactiveSysEncScope)
dataUnit.Value += queue->CryptoInfo->FirstDataUnitNo.Value;
else if (queue->RemapEncryptedArea)
dataUnit.Value += queue->RemappedAreaDataUnitOffset;
EncryptDataUnits (activeFragmentBuffer + request->EncryptedOffset, &dataUnit, request->EncryptedLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo);
}
}
// Queue IO request
ExInterlockedInsertTailList (&queue->IoThreadQueue, &request->ListEntry, &queue->IoThreadQueueLock);
KeSetEvent (&queue->IoThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE);
if (isLastFragment)
break;
dataRemaining -= queueFragmentSize;
dataBuffer += queueFragmentSize;
fragmentOffset.QuadPart += queueFragmentSize;
}
}
}
PsTerminateSystemThread (STATUS_SUCCESS);
}
NTSTATUS EncryptedIoQueueAddIrp (EncryptedIoQueue *queue, PIRP irp)
{
NTSTATUS status;
InterlockedIncrement (&queue->OutstandingIoCount);
if (queue->StopPending)
{
Dump ("STATUS_DEVICE_NOT_READY out=%d\n", queue->OutstandingIoCount);
status = STATUS_DEVICE_NOT_READY;
goto err;
}
status = IoAcquireRemoveLock (&queue->RemoveLock, irp);
if (!NT_SUCCESS (status))
goto err;
#ifdef TC_TRACE_IO_QUEUE
{
PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation (irp);
Dump ("* %I64d [%I64d] %c len=%d out=%d\n", irpSp->MajorFunction == IRP_MJ_WRITE ? irpSp->Parameters.Write.ByteOffset : irpSp->Parameters.Read.ByteOffset, GetElapsedTime (&queue->LastPerformanceCounter), irpSp->MajorFunction == IRP_MJ_WRITE ? 'W' : 'R', irpSp->MajorFunction == IRP_MJ_WRITE ? irpSp->Parameters.Write.Length : irpSp->Parameters.Read.Length, queue->OutstandingIoCount);
}
#endif
IoMarkIrpPending (irp);
ExInterlockedInsertTailList (&queue->MainThreadQueue, &irp->Tail.Overlay.ListEntry, &queue->MainThreadQueueLock);
KeSetEvent (&queue->MainThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE);
return STATUS_PENDING;
err:
DecrementOutstandingIoCount (queue);
return status;
}
NTSTATUS EncryptedIoQueueHoldWhenIdle (EncryptedIoQueue *queue, int64 timeout)
{
NTSTATUS status;
ASSERT (!queue->Suspended);
queue->SuspendPending = TRUE;
while (TRUE)
{
while (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) > 0)
{
LARGE_INTEGER waitTimeout;
waitTimeout.QuadPart = timeout * -10000;
status = KeWaitForSingleObject (&queue->NoOutstandingIoEvent, Executive, KernelMode, FALSE, timeout != 0 ? &waitTimeout : NULL);
if (status == STATUS_TIMEOUT)
status = STATUS_UNSUCCESSFUL;
if (!NT_SUCCESS (status))
{
queue->SuspendPending = FALSE;
return status;
}
TCSleep (1);
if (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) > 0)
{
queue->SuspendPending = FALSE;
return STATUS_UNSUCCESSFUL;
}
}
KeClearEvent (&queue->QueueResumedEvent);
queue->Suspended = TRUE;
if (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) == 0)
break;
queue->Suspended = FALSE;
KeSetEvent (&queue->QueueResumedEvent, IO_DISK_INCREMENT, FALSE);
}
queue->ReadAheadBufferValid = FALSE;
queue->SuspendPending = FALSE;
return STATUS_SUCCESS;
}
BOOL EncryptedIoQueueIsSuspended (EncryptedIoQueue *queue)
{
return queue->Suspended;
}
BOOL EncryptedIoQueueIsRunning (EncryptedIoQueue *queue)
{
return !queue->StopPending;
}
NTSTATUS EncryptedIoQueueResumeFromHold (EncryptedIoQueue *queue)
{
ASSERT (queue->Suspended);
queue->Suspended = FALSE;
KeSetEvent (&queue->QueueResumedEvent, IO_DISK_INCREMENT, FALSE);
return STATUS_SUCCESS;
}
NTSTATUS EncryptedIoQueueStart (EncryptedIoQueue *queue)
{
NTSTATUS status;
EncryptedIoQueueBuffer *buffer;
int i, preallocatedIoRequestCount, preallocatedItemCount, fragmentSize;
preallocatedIoRequestCount = EncryptionIoRequestCount;
preallocatedItemCount = EncryptionItemCount;
fragmentSize = EncryptionFragmentSize;
queue->StartPending = TRUE;
queue->ThreadExitRequested = FALSE;
queue->OutstandingIoCount = 0;
queue->IoThreadPendingRequestCount = 0;
queue->FirstPoolBuffer = NULL;
KeInitializeMutex (&queue->BufferPoolMutex, 0);
KeInitializeEvent (&queue->NoOutstandingIoEvent, SynchronizationEvent, FALSE);
KeInitializeEvent (&queue->PoolBufferFreeEvent, SynchronizationEvent, FALSE);
KeInitializeEvent (&queue->QueueResumedEvent, SynchronizationEvent, FALSE);
retry_fragmentAllocate:
queue->FragmentBufferA = TCalloc (fragmentSize);
if (!queue->FragmentBufferA)
{
if (fragmentSize > TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE)
{
fragmentSize = TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE;
goto retry_fragmentAllocate;
}
else
goto noMemory;
}
queue->FragmentBufferB = TCalloc (fragmentSize);
if (!queue->FragmentBufferB)
{
if (fragmentSize > TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE)
{
fragmentSize = TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE;
TCfree (queue->FragmentBufferA);
queue->FragmentBufferA = NULL;
goto retry_fragmentAllocate;
}
else
goto noMemory;
}
queue->ReadAheadBufferValid = FALSE;
queue->ReadAheadBuffer = TCalloc (fragmentSize);
if (!queue->ReadAheadBuffer)
{
if (fragmentSize > TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE)
{
fragmentSize = TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE;
TCfree (queue->FragmentBufferA);
TCfree (queue->FragmentBufferB);
queue->FragmentBufferA = NULL;
queue->FragmentBufferB = NULL;
goto retry_fragmentAllocate;
}
else
goto noMemory;
}
queue->FragmentSize = fragmentSize;
KeInitializeEvent (&queue->FragmentBufferAFreeEvent, SynchronizationEvent, TRUE);
KeInitializeEvent (&queue->FragmentBufferBFreeEvent, SynchronizationEvent, TRUE);
retry_preallocated:
// Preallocate buffers
for (i = 0; i < preallocatedIoRequestCount; ++i)
{
if (i < preallocatedItemCount && !GetPoolBuffer (queue, sizeof (EncryptedIoQueueItem)))
{
if (preallocatedItemCount > TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT)
{
preallocatedItemCount = TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT;
preallocatedIoRequestCount = TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT;
FreePoolBuffers (queue);
goto retry_preallocated;
}
else
goto noMemory;
}
if (!GetPoolBuffer (queue, sizeof (EncryptedIoRequest)))
{
if (preallocatedIoRequestCount > TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT)
{
preallocatedItemCount = TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT;
preallocatedIoRequestCount = TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT;
FreePoolBuffers (queue);
goto retry_preallocated;
}
else
goto noMemory;
}
}
for (buffer = queue->FirstPoolBuffer; buffer != NULL; buffer = buffer->NextBuffer)
{
buffer->InUse = FALSE;
}
// Main thread
InitializeListHead (&queue->MainThreadQueue);
KeInitializeSpinLock (&queue->MainThreadQueueLock);
KeInitializeEvent (&queue->MainThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE);
status = TCStartThread (MainThreadProc, queue, &queue->MainThread);
if (!NT_SUCCESS (status))
goto err;
// IO thread
InitializeListHead (&queue->IoThreadQueue);
KeInitializeSpinLock (&queue->IoThreadQueueLock);
KeInitializeEvent (&queue->IoThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE);
status = TCStartThread (IoThreadProc, queue, &queue->IoThread);
if (!NT_SUCCESS (status))
{
queue->ThreadExitRequested = TRUE;
TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent);
goto err;
}
// Completion thread
InitializeListHead (&queue->CompletionThreadQueue);
KeInitializeSpinLock (&queue->CompletionThreadQueueLock);
KeInitializeEvent (&queue->CompletionThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE);
status = TCStartThread (CompletionThreadProc, queue, &queue->CompletionThread);
if (!NT_SUCCESS (status))
{
queue->ThreadExitRequested = TRUE;
TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent);
TCStopThread (queue->IoThread, &queue->IoThreadQueueNotEmptyEvent);
goto err;
}
#ifdef TC_TRACE_IO_QUEUE
GetElapsedTimeInit (&queue->LastPerformanceCounter);
#endif
queue->StopPending = FALSE;
queue->StartPending = FALSE;
Dump ("Queue started\n");
return STATUS_SUCCESS;
noMemory:
status = STATUS_INSUFFICIENT_RESOURCES;
err:
if (queue->FragmentBufferA)
TCfree (queue->FragmentBufferA);
if (queue->FragmentBufferB)
TCfree (queue->FragmentBufferB);
if (queue->ReadAheadBuffer)
TCfree (queue->ReadAheadBuffer);
FreePoolBuffers (queue);
queue->StartPending = FALSE;
return status;
}
NTSTATUS EncryptedIoQueueStop (EncryptedIoQueue *queue)
{
ASSERT (!queue->StopPending);
queue->StopPending = TRUE;
while (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) > 0)
{
KeWaitForSingleObject (&queue->NoOutstandingIoEvent, Executive, KernelMode, FALSE, NULL);
}
Dump ("Queue stopping out=%d\n", queue->OutstandingIoCount);
queue->ThreadExitRequested = TRUE;
TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent);
TCStopThread (queue->IoThread, &queue->IoThreadQueueNotEmptyEvent);
TCStopThread (queue->CompletionThread, &queue->CompletionThreadQueueNotEmptyEvent);
TCfree (queue->FragmentBufferA);
TCfree (queue->FragmentBufferB);
TCfree (queue->ReadAheadBuffer);
FreePoolBuffers (queue);
Dump ("Queue stopped out=%d\n", queue->OutstandingIoCount);
return STATUS_SUCCESS;
}