VeraCrypt/src/Common/Crypto.c

1558 lines
38 KiB
C

/*
Legal Notice: Some portions of the source code contained in this file were
derived from the source code of TrueCrypt 7.1a, which is
Copyright (c) 2003-2012 TrueCrypt Developers Association and which is
governed by the TrueCrypt License 3.0, also from the source code of
Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
and which is governed by the 'License Agreement for Encryption for the Masses'
Modifications and additions to the original source code (contained in this file)
and all other portions of this file are Copyright (c) 2013-2017 IDRIX
and are governed by the Apache License 2.0 the full text of which is
contained in the file License.txt included in VeraCrypt binary and source
code distribution packages. */
#include "Tcdefs.h"
#include "Crypto.h"
#include "Xts.h"
#include "Crc.h"
#include "Common/Endian.h"
#if !defined(_UEFI)
#include <string.h>
#ifndef TC_WINDOWS_BOOT
#ifdef TC_WINDOWS_DRIVER
#include <ntstrsafe.h>
#define StringCchCatW RtlStringCchCatW
#define StringCchCopyW RtlStringCchCopyW
#else
#include <strsafe.h>
#endif
#include "EncryptionThreadPool.h"
#endif
#endif
#include "Volumes.h"
#include "cpu.h"
#pragma warning (disable:4706) // assignment within conditional expression
/* Update the following when adding a new cipher or EA:
Crypto.h:
ID #define
MAX_EXPANDED_KEY #define
Crypto.c:
Ciphers[]
EncryptionAlgorithms[]
CipherInit()
EncipherBlock()
DecipherBlock()
*/
#ifndef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
// Cipher configuration
static Cipher Ciphers[] =
{
// Block Size Key Size Key Schedule Size
// ID Name (Bytes) (Bytes) (Bytes)
#ifdef TC_WINDOWS_BOOT
{ AES, "AES", 16, 32, AES_KS },
#ifndef WOLFCRYPT_BACKEND
{ SERPENT, "Serpent", 16, 32, 140*4 },
{ TWOFISH, "Twofish", 16, 32, TWOFISH_KS },
#endif
#else
{ AES, L"AES", 16, 32, AES_KS },
#ifndef WOLFCRYPT_BACKEND
{ SERPENT, L"Serpent", 16, 32, 140*4 },
{ TWOFISH, L"Twofish", 16, 32, TWOFISH_KS },
{ CAMELLIA, L"Camellia", 16, 32, CAMELLIA_KS },
{ KUZNYECHIK, L"Kuznyechik",16, 32, KUZNYECHIK_KS },
#endif
#endif
{ 0, 0, 0, 0, 0 }
};
// Encryption algorithm configuration
static EncryptionAlgorithm EncryptionAlgorithms[] =
{
// Cipher(s) Modes FormatEnabled
#ifndef TC_WINDOWS_BOOT
{ { 0, 0 }, { 0, 0}, 0, 0 }, // Must be all-zero
{ { AES, 0 }, { XTS, 0 }, 1, 1 },
#ifndef WOLFCRYPT_BACKEND
{ { SERPENT, 0 }, { XTS, 0 }, 1, 1 },
{ { TWOFISH, 0 }, { XTS, 0 }, 1, 1 },
{ { CAMELLIA, 0 }, { XTS, 0 }, 1, 1 },
{ { KUZNYECHIK, 0 }, { XTS, 0 }, 0, 1 },
{ { TWOFISH, AES, 0 }, { XTS, 0 }, 1, 1 },
{ { SERPENT, TWOFISH, AES, 0 }, { XTS, 0 }, 1, 1 },
{ { AES, SERPENT, 0 }, { XTS, 0 }, 1, 1 },
{ { AES, TWOFISH, SERPENT, 0 }, { XTS, 0 }, 1, 1 },
{ { SERPENT, TWOFISH, 0 }, { XTS, 0 }, 1, 1 },
{ { KUZNYECHIK, CAMELLIA, 0 }, { XTS, 0 }, 0, 1 },
{ { TWOFISH, KUZNYECHIK, 0 }, { XTS, 0 }, 0, 1 },
{ { SERPENT, CAMELLIA, 0 }, { XTS, 0 }, 0, 1 },
{ { AES, KUZNYECHIK, 0 }, { XTS, 0 }, 0, 1 },
{ { CAMELLIA, SERPENT, KUZNYECHIK, 0 }, { XTS, 0 }, 0, 1 },
#endif
{ { 0, 0 }, { 0, 0}, 0, 0 } // Must be all-zero
#else // TC_WINDOWS_BOOT
// Encryption algorithms available for boot drive encryption
{ { 0, 0 }, { 0, 0 }, 0 }, // Must be all-zero
{ { AES, 0 }, { XTS, 0 }, 1 },
#ifndef WOLFCRYPT_BACKEND
{ { SERPENT, 0 }, { XTS, 0 }, 1 },
{ { TWOFISH, 0 }, { XTS, 0 }, 1 },
{ { TWOFISH, AES, 0 }, { XTS, 0 }, 1 },
{ { SERPENT, TWOFISH, AES, 0 }, { XTS, 0 }, 1 },
{ { AES, SERPENT, 0 }, { XTS, 0 }, 1 },
{ { AES, TWOFISH, SERPENT, 0 }, { XTS, 0 }, 1 },
{ { SERPENT, TWOFISH, 0 }, { XTS, 0 }, 1 },
#endif
{ { 0, 0 }, { 0, 0 }, 0 }, // Must be all-zero
#endif
};
#ifndef TC_WINDOWS_BOOT
// Hash algorithms
static Hash Hashes[] =
{ // ID Name Deprecated System Encryption
{ SHA512, L"SHA-512", FALSE, FALSE },
{ SHA256, L"SHA-256", FALSE, TRUE },
#ifndef WOLFCRYPT_BACKEND
{ BLAKE2S, L"BLAKE2s-256", FALSE, TRUE },
{ WHIRLPOOL, L"Whirlpool", FALSE, FALSE },
{ STREEBOG, L"Streebog", FALSE, FALSE },
#endif
{ 0, 0, 0 }
};
#endif
/* Return values: 0 = success, ERR_CIPHER_INIT_FAILURE (fatal), ERR_CIPHER_INIT_WEAK_KEY (non-fatal) */
int CipherInit (int cipher, unsigned char *key, unsigned __int8 *ks)
{
int retVal = ERR_SUCCESS;
switch (cipher)
{
case AES:
#ifndef TC_WINDOWS_BOOT
if (aes_encrypt_key256 (key, (aes_encrypt_ctx *) ks) != EXIT_SUCCESS)
return ERR_CIPHER_INIT_FAILURE;
if (aes_decrypt_key256 (key, (aes_decrypt_ctx *) (ks + sizeof(aes_encrypt_ctx))) != EXIT_SUCCESS)
return ERR_CIPHER_INIT_FAILURE;
#else
if (aes_set_key (key, (length_type) CipherGetKeySize(AES), (aes_context *) ks) != 0)
return ERR_CIPHER_INIT_FAILURE;
#endif
break;
#ifndef WOLFCRYPT_BACKEND
case SERPENT:
serpent_set_key (key, ks);
break;
case TWOFISH:
twofish_set_key ((TwofishInstance *)ks, (const u4byte *)key);
break;
#if !defined (TC_WINDOWS_BOOT) || defined (TC_WINDOWS_BOOT_CAMELLIA)
case CAMELLIA:
camellia_set_key (key, ks);
break;
#endif
#if !defined(TC_WINDOWS_BOOT)
case KUZNYECHIK:
kuznyechik_set_key(key, (kuznyechik_kds*)ks);
break;
#endif // !defined(TC_WINDOWS_BOOT)
#endif
default:
// Unknown/wrong cipher ID
return ERR_CIPHER_INIT_FAILURE;
}
return retVal;
}
void EncipherBlock(int cipher, void *data, void *ks)
{
switch (cipher)
{
case AES:
// In 32-bit kernel mode, due to KeSaveFloatingPointState() overhead, AES instructions can be used only when processing the whole data unit.
#if (defined (_WIN64) || !defined (TC_WINDOWS_DRIVER)) && !defined (TC_WINDOWS_BOOT)
if (IsAesHwCpuSupported())
aes_hw_cpu_encrypt (ks, data);
else
#endif
aes_encrypt (data, data, ks);
break;
#ifndef WOLFCRYPT_BACKEND
case TWOFISH: twofish_encrypt (ks, data, data); break;
case SERPENT: serpent_encrypt (data, data, ks); break;
#if !defined (TC_WINDOWS_BOOT) || defined (TC_WINDOWS_BOOT_CAMELLIA)
case CAMELLIA: camellia_encrypt (data, data, ks); break;
#endif
#if !defined(TC_WINDOWS_BOOT)
case KUZNYECHIK: kuznyechik_encrypt_block(data, data, ks); break;
#endif // !defined(TC_WINDOWS_BOOT)
#endif
default: TC_THROW_FATAL_EXCEPTION; // Unknown/wrong ID
}
}
#ifndef TC_WINDOWS_BOOT
void EncipherBlocks (int cipher, void *dataPtr, void *ks, size_t blockCount)
{
byte *data = dataPtr;
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KFLOATING_SAVE floatingPointState;
#endif
if (cipher == AES
&& (blockCount & (32 - 1)) == 0
&& IsAesHwCpuSupported()
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
&& NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState))
#endif
)
{
while (blockCount > 0)
{
aes_hw_cpu_encrypt_32_blocks (ks, data);
data += 32 * 16;
blockCount -= 32;
}
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KeRestoreFloatingPointState (&floatingPointState);
#endif
}
#ifndef WOLFCRYPT_BACKEND
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && !defined (_UEFI)
else if (cipher == SERPENT
&& (blockCount >= 4)
&& HasSSE2()
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
&& NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState))
#endif
)
{
serpent_encrypt_blocks (data, data, blockCount, ks);
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KeRestoreFloatingPointState (&floatingPointState);
#endif
}
#endif
#if CRYPTOPP_BOOL_X64 && !defined(CRYPTOPP_DISABLE_ASM)
else if (cipher == TWOFISH) {
twofish_encrypt_blocks(ks, data, data, (uint32) blockCount);
}
else if (cipher == CAMELLIA) {
camellia_encrypt_blocks(ks, data, data, (uint32) blockCount);
}
#endif
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && !defined (_UEFI)
else if (cipher == KUZNYECHIK
&& HasSSE2()
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
&& (blockCount >= 4) && NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState))
#endif
)
{
kuznyechik_encrypt_blocks (data, data, blockCount, ks);
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KeRestoreFloatingPointState (&floatingPointState);
#endif
}
#endif
#endif
else
{
size_t blockSize = CipherGetBlockSize (cipher);
while (blockCount-- > 0)
{
EncipherBlock (cipher, data, ks);
data += blockSize;
}
}
}
#endif // !TC_WINDOWS_BOOT
void DecipherBlock(int cipher, void *data, void *ks)
{
switch (cipher)
{
#ifndef WOLFCRYPT_BACKEND
case SERPENT: serpent_decrypt (data, data, ks); break;
case TWOFISH: twofish_decrypt (ks, data, data); break;
#if !defined (TC_WINDOWS_BOOT) || defined (TC_WINDOWS_BOOT_CAMELLIA)
case CAMELLIA: camellia_decrypt (data, data, ks); break;
#endif
#if !defined(TC_WINDOWS_BOOT)
case KUZNYECHIK: kuznyechik_decrypt_block(data, data, ks); break;
#endif // !defined(TC_WINDOWS_BOOT)
#endif
#ifndef TC_WINDOWS_BOOT
case AES:
#if defined (_WIN64) || !defined (TC_WINDOWS_DRIVER)
if (IsAesHwCpuSupported())
aes_hw_cpu_decrypt ((byte *) ks + sizeof (aes_encrypt_ctx), data);
else
#endif
aes_decrypt (data, data, (void *) ((char *) ks + sizeof(aes_encrypt_ctx)));
break;
#else
case AES: aes_decrypt (data, data, ks); break;
#endif
default: TC_THROW_FATAL_EXCEPTION; // Unknown/wrong ID
}
}
#ifndef TC_WINDOWS_BOOT
void DecipherBlocks (int cipher, void *dataPtr, void *ks, size_t blockCount)
{
byte *data = dataPtr;
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KFLOATING_SAVE floatingPointState;
#endif
if (cipher == AES
&& (blockCount & (32 - 1)) == 0
&& IsAesHwCpuSupported()
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
&& NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState))
#endif
)
{
while (blockCount > 0)
{
aes_hw_cpu_decrypt_32_blocks ((byte *) ks + sizeof (aes_encrypt_ctx), data);
data += 32 * 16;
blockCount -= 32;
}
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KeRestoreFloatingPointState (&floatingPointState);
#endif
}
#ifndef WOLFCRYPT_BACKEND
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && !defined (_UEFI)
else if (cipher == SERPENT
&& (blockCount >= 4)
&& HasSSE2()
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
&& NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState))
#endif
)
{
serpent_decrypt_blocks (data, data, blockCount, ks);
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KeRestoreFloatingPointState (&floatingPointState);
#endif
}
#endif
#if CRYPTOPP_BOOL_X64 && !defined(CRYPTOPP_DISABLE_ASM)
else if (cipher == TWOFISH) {
twofish_decrypt_blocks(ks, data, data, (uint32) blockCount);
}
else if (cipher == CAMELLIA) {
camellia_decrypt_blocks(ks, data, data, (uint32) blockCount);
}
#endif
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && !defined (_UEFI)
else if (cipher == KUZNYECHIK
&& HasSSE2()
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
&& (blockCount >= 4) && NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState))
#endif
)
{
kuznyechik_decrypt_blocks (data, data, blockCount, ks);
#if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64)
KeRestoreFloatingPointState (&floatingPointState);
#endif
}
#endif
#endif
else
{
size_t blockSize = CipherGetBlockSize (cipher);
while (blockCount-- > 0)
{
DecipherBlock (cipher, data, ks);
data += blockSize;
}
}
}
#endif // !TC_WINDOWS_BOOT
// Ciphers support
Cipher *CipherGet (int id)
{
int i;
for (i = 0; Ciphers[i].Id != 0; i++)
if (Ciphers[i].Id == id)
return &Ciphers[i];
return NULL;
}
#ifndef TC_WINDOWS_BOOT
const wchar_t *CipherGetName (int cipherId)
{
Cipher* pCipher = CipherGet (cipherId);
return pCipher? pCipher -> Name : L"";
}
int CipherGetBlockSize (int cipherId)
{
Cipher* pCipher = CipherGet (cipherId);
return pCipher? pCipher -> BlockSize : 0;
}
#endif
int CipherGetKeySize (int cipherId)
{
#ifdef TC_WINDOWS_BOOT
return CipherGet (cipherId) -> KeySize;
#else
Cipher* pCipher = CipherGet (cipherId);
return pCipher? pCipher -> KeySize : 0;
#endif
}
int CipherGetKeyScheduleSize (int cipherId)
{
#ifdef TC_WINDOWS_BOOT
return CipherGet (cipherId) -> KeyScheduleSize;
#else
Cipher* pCipher = CipherGet (cipherId);
return pCipher? pCipher -> KeyScheduleSize : 0;
#endif
}
#ifndef TC_WINDOWS_BOOT
BOOL CipherSupportsIntraDataUnitParallelization (int cipher)
{
return (cipher == AES && IsAesHwCpuSupported())
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE && !defined (_UEFI)
|| (cipher == SERPENT && HasSSE2())
|| (cipher == KUZNYECHIK && HasSSE2())
#endif
#if CRYPTOPP_BOOL_X64 && !defined(CRYPTOPP_DISABLE_ASM)
|| (cipher == TWOFISH)
|| (cipher == CAMELLIA)
#endif
;
}
#endif
// Encryption algorithms support
int EAGetFirst ()
{
return 1;
}
#ifndef TC_WINDOWS_BOOT
// Returns number of EAs
int EAGetCount (void)
{
int ea, count = 0;
for (ea = EAGetFirst (); ea != 0; ea = EAGetNext (ea))
{
count++;
}
return count;
}
#endif
int EAGetNext (int previousEA)
{
int id = previousEA + 1;
if (EncryptionAlgorithms[id].Ciphers[0] != 0) return id;
return 0;
}
// Return values: 0 = success, ERR_CIPHER_INIT_FAILURE (fatal), ERR_CIPHER_INIT_WEAK_KEY (non-fatal)
int EAInit (int ea, unsigned char *key, unsigned __int8 *ks)
{
int c, retVal = ERR_SUCCESS;
if (ea == 0)
return ERR_CIPHER_INIT_FAILURE;
for (c = EAGetFirstCipher (ea); c != 0; c = EAGetNextCipher (ea, c))
{
switch (CipherInit (c, key, ks))
{
case ERR_CIPHER_INIT_FAILURE:
return ERR_CIPHER_INIT_FAILURE;
case ERR_CIPHER_INIT_WEAK_KEY:
retVal = ERR_CIPHER_INIT_WEAK_KEY; // Non-fatal error
break;
}
key += CipherGetKeySize (c);
ks += CipherGetKeyScheduleSize (c);
}
return retVal;
}
#ifndef TC_WINDOWS_BOOT
BOOL EAInitMode (PCRYPTO_INFO ci, unsigned char* key2)
{
switch (ci->mode)
{
case XTS:
// Secondary key schedule
if (EAInit (ci->ea, key2, ci->ks2) != ERR_SUCCESS)
return FALSE;
#ifdef WOLFCRYPT_BACKEND
if (xts_encrypt_key256 (key2, (aes_encrypt_ctx *) ci->ks) != EXIT_SUCCESS)
return ERR_CIPHER_INIT_FAILURE;
if (xts_decrypt_key256 (key2, (aes_decrypt_ctx *) (ci->ks + sizeof(aes_encrypt_ctx))) != EXIT_SUCCESS)
return ERR_CIPHER_INIT_FAILURE;
#endif
/* Note: XTS mode could potentially be initialized with a weak key causing all blocks in one data unit
on the volume to be tweaked with zero tweaks (i.e. 512 bytes of the volume would be encrypted in ECB
mode). However, to create a TrueCrypt volume with such a weak key, each human being on Earth would have
to create approximately 11,378,125,361,078,862 (about eleven quadrillion) TrueCrypt volumes (provided
that the size of each of the volumes is 1024 terabytes). */
break;
default:
// Unknown/wrong ID
TC_THROW_FATAL_EXCEPTION;
}
return TRUE;
}
static void EAGetDisplayName(wchar_t *buf, size_t bufLen, int ea, int i)
{
StringCchCopyW (buf, bufLen, CipherGetName (i));
if (i = EAGetPreviousCipher(ea, i))
{
size_t curLen;
StringCchCatW (buf, bufLen, L"(");
curLen = wcslen(buf);
EAGetDisplayName (&buf[curLen], bufLen - curLen, ea, i);
StringCchCatW (buf, bufLen, L")");
}
}
// Returns name of EA, cascaded cipher names are separated by hyphens
wchar_t *EAGetName (wchar_t *buf, size_t bufLen, int ea, int guiDisplay)
{
if (guiDisplay)
{
EAGetDisplayName (buf, bufLen, ea, EAGetLastCipher(ea));
}
else
{
int i = EAGetLastCipher(ea);
StringCchCopyW (buf, bufLen, (i != 0) ? CipherGetName (i) : L"?");
while (i = EAGetPreviousCipher(ea, i))
{
StringCchCatW (buf, bufLen, L"-");
StringCchCatW (buf, bufLen, CipherGetName (i));
}
}
return buf;
}
int EAGetByName (wchar_t *name)
{
int ea = EAGetFirst ();
wchar_t n[128];
do
{
EAGetName(n, 128, ea, 1);
#if defined(_UEFI)
if (wcscmp(n, name) == 0)
#else
if (_wcsicmp(n, name) == 0)
#endif
return ea;
}
while (ea = EAGetNext (ea));
return 0;
}
#endif // TC_WINDOWS_BOOT
// Returns sum of key sizes of all ciphers of the EA (in bytes)
int EAGetKeySize (int ea)
{
int i = EAGetFirstCipher (ea);
int size = CipherGetKeySize (i);
while (i = EAGetNextCipher (ea, i))
{
size += CipherGetKeySize (i);
}
return size;
}
#ifndef TC_WINDOWS_BOOT
// Returns the first mode of operation of EA
int EAGetFirstMode (int ea)
{
return (EncryptionAlgorithms[ea].Modes[0]);
}
int EAGetNextMode (int ea, int previousModeId)
{
int c, i = 0;
while (c = EncryptionAlgorithms[ea].Modes[i++])
{
if (c == previousModeId)
return EncryptionAlgorithms[ea].Modes[i];
}
return 0;
}
// Returns the name of the mode of operation of the whole EA
wchar_t *EAGetModeName (int ea, int mode, BOOL capitalLetters)
{
switch (mode)
{
case XTS:
return L"XTS";
}
return L"[unknown]";
}
#endif // TC_WINDOWS_BOOT
// Returns sum of key schedule sizes of all ciphers of the EA
int EAGetKeyScheduleSize (int ea)
{
int i = EAGetFirstCipher(ea);
int size = CipherGetKeyScheduleSize (i);
while (i = EAGetNextCipher(ea, i))
{
size += CipherGetKeyScheduleSize (i);
}
return size;
}
#ifndef TC_WINDOWS_BOOT
// Returns number of ciphers in EA
int EAGetCipherCount (int ea)
{
int i = 0;
while (EncryptionAlgorithms[ea].Ciphers[i++]);
return i - 1;
}
#endif
int EAGetFirstCipher (int ea)
{
return EncryptionAlgorithms[ea].Ciphers[0];
}
int EAGetLastCipher (int ea)
{
int c, i = 0;
while (c = EncryptionAlgorithms[ea].Ciphers[i++]);
return EncryptionAlgorithms[ea].Ciphers[i - 2];
}
int EAGetNextCipher (int ea, int previousCipherId)
{
int c, i = 0;
while (c = EncryptionAlgorithms[ea].Ciphers[i++])
{
if (c == previousCipherId)
return EncryptionAlgorithms[ea].Ciphers[i];
}
return 0;
}
int EAGetPreviousCipher (int ea, int previousCipherId)
{
int c, i = 0;
if (EncryptionAlgorithms[ea].Ciphers[i++] == previousCipherId)
return 0;
while (c = EncryptionAlgorithms[ea].Ciphers[i++])
{
if (c == previousCipherId)
return EncryptionAlgorithms[ea].Ciphers[i - 2];
}
return 0;
}
#ifndef TC_WINDOWS_BOOT
int EAIsFormatEnabled (int ea)
{
return EncryptionAlgorithms[ea].FormatEnabled;
}
int EAIsMbrSysEncEnabled (int ea)
{
return EncryptionAlgorithms[ea].MbrSysEncEnabled;
}
// Returns TRUE if the mode of operation is supported for the encryption algorithm
BOOL EAIsModeSupported (int ea, int testedMode)
{
int mode;
for (mode = EAGetFirstMode (ea); mode != 0; mode = EAGetNextMode (ea, mode))
{
if (mode == testedMode)
return TRUE;
}
return FALSE;
}
Hash *HashGet (int id)
{
int i;
for (i = 0; Hashes[i].Id != 0; i++)
if (Hashes[i].Id == id)
return &Hashes[i];
return 0;
}
#ifdef _WIN32
int HashGetIdByName (wchar_t *name)
{
int i;
for (i = 0; Hashes[i].Id != 0; i++)
if (_wcsicmp (Hashes[i].Name, name) == 0)
return Hashes[i].Id;
return 0;
}
#endif
const wchar_t *HashGetName (int hashId)
{
Hash* pHash = HashGet(hashId);
return pHash? pHash -> Name : L"";
}
void HashGetName2 (wchar_t *buf, size_t bufLen, int hashId)
{
Hash* pHash = HashGet(hashId);
if (pHash)
StringCchCopyW (buf, bufLen, pHash -> Name);
else
buf[0] = L'\0';
}
BOOL HashIsDeprecated (int hashId)
{
Hash* pHash = HashGet(hashId);
return pHash? pHash -> Deprecated : FALSE;
}
BOOL HashForSystemEncryption (int hashId)
{
Hash* pHash = HashGet(hashId);
return pHash? pHash -> SystemEncryption : FALSE;
}
// Returns the largest key size needed by an EA for the specified mode of operation
int EAGetLargestKeyForMode (int mode)
{
int ea, key = 0;
for (ea = EAGetFirst (); ea != 0; ea = EAGetNext (ea))
{
if (!EAIsModeSupported (ea, mode))
continue;
if (EAGetKeySize (ea) >= key)
key = EAGetKeySize (ea);
}
return key;
}
// Returns the maximum number of bytes necessary to be generated by the PBKDF2 (PKCS #5)
int GetMaxPkcs5OutSize (void)
{
int size = 32;
size = VC_MAX (size, EAGetLargestKeyForMode (XTS) * 2); // Sizes of primary + secondary keys
return size;
}
#endif
#endif // TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
#ifdef TC_WINDOWS_BOOT
static byte CryptoInfoBufferInUse = 0;
CRYPTO_INFO CryptoInfoBuffer;
#endif
PCRYPTO_INFO crypto_open ()
{
#ifndef TC_WINDOWS_BOOT
/* Do the crt allocation */
PCRYPTO_INFO cryptoInfo = (PCRYPTO_INFO) TCalloc (sizeof (CRYPTO_INFO));
if (cryptoInfo == NULL)
return NULL;
memset (cryptoInfo, 0, sizeof (CRYPTO_INFO));
#if !defined(DEVICE_DRIVER) && !defined(_UEFI)
VirtualLock (cryptoInfo, sizeof (CRYPTO_INFO));
#endif
cryptoInfo->ea = -1;
return cryptoInfo;
#else // TC_WINDOWS_BOOT
#if 0
if (CryptoInfoBufferInUse)
TC_THROW_FATAL_EXCEPTION;
#endif
CryptoInfoBufferInUse = 1;
return &CryptoInfoBuffer;
#endif // TC_WINDOWS_BOOT
}
#ifndef TC_WINDOWS_BOOT
void crypto_loadkey (PKEY_INFO keyInfo, char *lpszUserKey, int nUserKeyLen)
{
keyInfo->keyLength = nUserKeyLen;
burn (keyInfo->userKey, sizeof (keyInfo->userKey));
memcpy (keyInfo->userKey, lpszUserKey, nUserKeyLen);
}
void crypto_eraseKeys (PCRYPTO_INFO cryptoInfo)
{
burn (cryptoInfo->ks, sizeof (cryptoInfo->ks));
burn (cryptoInfo->ks2, sizeof (cryptoInfo->ks2));
#ifdef TC_WINDOWS_DRIVER
burn (cryptoInfo->master_keydata_hash, sizeof (cryptoInfo->master_keydata_hash));
#else
burn (cryptoInfo->master_keydata, sizeof (cryptoInfo->master_keydata));
burn (cryptoInfo->k2, sizeof (cryptoInfo->k2));
#endif
burn (&cryptoInfo->noIterations, sizeof (cryptoInfo->noIterations));
burn (&cryptoInfo->volumePim, sizeof (cryptoInfo->volumePim));
}
#endif
void crypto_close (PCRYPTO_INFO cryptoInfo)
{
#ifndef TC_WINDOWS_BOOT
if (cryptoInfo != NULL)
{
burn (cryptoInfo, sizeof (CRYPTO_INFO));
#if !defined(DEVICE_DRIVER) && !defined(_UEFI)
VirtualUnlock (cryptoInfo, sizeof (CRYPTO_INFO));
#endif
TCfree (cryptoInfo);
}
#else // TC_WINDOWS_BOOT
burn (&CryptoInfoBuffer, sizeof (CryptoInfoBuffer));
CryptoInfoBufferInUse = FALSE;
#endif // TC_WINDOWS_BOOT
}
#ifndef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
// EncryptBuffer
//
// buf: data to be encrypted; the start of the buffer is assumed to be aligned with the start of a data unit.
// len: number of bytes to encrypt; must be divisible by the block size (for cascaded ciphers, divisible
// by the largest block size used within the cascade)
void EncryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo)
{
switch (cryptoInfo->mode)
{
case XTS:
{
unsigned __int8 *ks = cryptoInfo->ks;
unsigned __int8 *ks2 = cryptoInfo->ks2;
UINT64_STRUCT dataUnitNo;
int cipher;
// When encrypting/decrypting a buffer (typically a volume header) the sequential number
// of the first XTS data unit in the buffer is always 0 and the start of the buffer is
// always assumed to be aligned with the start of a data unit.
dataUnitNo.LowPart = 0;
dataUnitNo.HighPart = 0;
for (cipher = EAGetFirstCipher (cryptoInfo->ea);
cipher != 0;
cipher = EAGetNextCipher (cryptoInfo->ea, cipher))
{
EncryptBufferXTS (buf, len, &dataUnitNo, 0, ks, ks2, cipher);
ks += CipherGetKeyScheduleSize (cipher);
ks2 += CipherGetKeyScheduleSize (cipher);
}
}
break;
default:
// Unknown/wrong ID
TC_THROW_FATAL_EXCEPTION;
}
}
// buf: data to be encrypted
// unitNo: sequential number of the data unit with which the buffer starts
// nbrUnits: number of data units in the buffer
void EncryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, uint32 nbrUnits, PCRYPTO_INFO ci)
#if !defined(TC_WINDOWS_BOOT) && !defined(_UEFI)
{
EncryptionThreadPoolDoWork (EncryptDataUnitsWork, buf, structUnitNo, nbrUnits, ci);
}
void EncryptDataUnitsCurrentThread (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci)
#endif // !TC_WINDOWS_BOOT
{
int ea = ci->ea;
unsigned __int8 *ks = ci->ks;
unsigned __int8 *ks2 = ci->ks2;
int cipher;
switch (ci->mode)
{
case XTS:
for (cipher = EAGetFirstCipher (ea); cipher != 0; cipher = EAGetNextCipher (ea, cipher))
{
EncryptBufferXTS (buf,
nbrUnits * ENCRYPTION_DATA_UNIT_SIZE,
structUnitNo,
0,
ks,
ks2,
cipher);
ks += CipherGetKeyScheduleSize (cipher);
ks2 += CipherGetKeyScheduleSize (cipher);
}
break;
default:
// Unknown/wrong ID
TC_THROW_FATAL_EXCEPTION;
}
}
// DecryptBuffer
//
// buf: data to be decrypted; the start of the buffer is assumed to be aligned with the start of a data unit.
// len: number of bytes to decrypt; must be divisible by the block size (for cascaded ciphers, divisible
// by the largest block size used within the cascade)
void DecryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo)
{
switch (cryptoInfo->mode)
{
case XTS:
{
unsigned __int8 *ks = cryptoInfo->ks + EAGetKeyScheduleSize (cryptoInfo->ea);
unsigned __int8 *ks2 = cryptoInfo->ks2 + EAGetKeyScheduleSize (cryptoInfo->ea);
UINT64_STRUCT dataUnitNo;
int cipher;
// When encrypting/decrypting a buffer (typically a volume header) the sequential number
// of the first XTS data unit in the buffer is always 0 and the start of the buffer is
// always assumed to be aligned with the start of the data unit 0.
dataUnitNo.LowPart = 0;
dataUnitNo.HighPart = 0;
for (cipher = EAGetLastCipher (cryptoInfo->ea);
cipher != 0;
cipher = EAGetPreviousCipher (cryptoInfo->ea, cipher))
{
ks -= CipherGetKeyScheduleSize (cipher);
ks2 -= CipherGetKeyScheduleSize (cipher);
DecryptBufferXTS (buf, len, &dataUnitNo, 0, ks, ks2, cipher);
}
}
break;
default:
// Unknown/wrong ID
TC_THROW_FATAL_EXCEPTION;
}
}
// buf: data to be decrypted
// unitNo: sequential number of the data unit with which the buffer starts
// nbrUnits: number of data units in the buffer
void DecryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, uint32 nbrUnits, PCRYPTO_INFO ci)
#if !defined(TC_WINDOWS_BOOT) && !defined(_UEFI)
{
EncryptionThreadPoolDoWork (DecryptDataUnitsWork, buf, structUnitNo, nbrUnits, ci);
}
void DecryptDataUnitsCurrentThread (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci)
#endif // !TC_WINDOWS_BOOT
{
int ea = ci->ea;
unsigned __int8 *ks = ci->ks;
unsigned __int8 *ks2 = ci->ks2;
int cipher;
switch (ci->mode)
{
case XTS:
ks += EAGetKeyScheduleSize (ea);
ks2 += EAGetKeyScheduleSize (ea);
for (cipher = EAGetLastCipher (ea); cipher != 0; cipher = EAGetPreviousCipher (ea, cipher))
{
ks -= CipherGetKeyScheduleSize (cipher);
ks2 -= CipherGetKeyScheduleSize (cipher);
DecryptBufferXTS (buf,
nbrUnits * ENCRYPTION_DATA_UNIT_SIZE,
structUnitNo,
0,
ks,
ks2,
cipher);
}
break;
default:
// Unknown/wrong ID
TC_THROW_FATAL_EXCEPTION;
}
}
#else // TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
#if !defined (TC_WINDOWS_BOOT_AES) && !defined (TC_WINDOWS_BOOT_SERPENT) && !defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (TC_WINDOWS_BOOT_CAMELLIA)
#error No cipher defined
#endif
void EncipherBlock(int cipher, void *data, void *ks)
{
#ifdef TC_WINDOWS_BOOT_AES
if (IsAesHwCpuSupported())
aes_hw_cpu_encrypt ((byte *) ks, data);
else
aes_encrypt (data, data, ks);
#elif defined (TC_WINDOWS_BOOT_SERPENT) && !defined (WOLFCRYPT_BACKEND)
serpent_encrypt (data, data, ks);
#elif defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (WOLFCRYPT_BACKEND)
twofish_encrypt (ks, data, data);
#elif defined (TC_WINDOWS_BOOT_CAMELLIA) && !defined (WOLFCRYPT_BACKEND)
camellia_encrypt (data, data, ks);
#endif
}
void DecipherBlock(int cipher, void *data, void *ks)
{
#ifdef TC_WINDOWS_BOOT_AES
if (IsAesHwCpuSupported())
aes_hw_cpu_decrypt ((byte *) ks + sizeof (aes_encrypt_ctx) + 14 * 16, data);
else
aes_decrypt (data, data, (aes_decrypt_ctx *) ((byte *) ks + sizeof(aes_encrypt_ctx)));
#elif defined (TC_WINDOWS_BOOT_SERPENT) && !defined (WOLFCRYPT_BACKEND)
serpent_decrypt (data, data, ks);
#elif defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (WOLFCRYPT_BACKEND)
twofish_decrypt (ks, data, data);
#elif defined (TC_WINDOWS_BOOT_CAMELLIA) && !defined (WOLFCRYPT_BACKEND)
camellia_decrypt (data, data, ks);
#endif
}
#ifdef TC_WINDOWS_BOOT_AES
int EAInit (unsigned char *key, unsigned __int8 *ks)
{
aes_init();
if (aes_encrypt_key256 (key, (aes_encrypt_ctx *) ks) != EXIT_SUCCESS)
return ERR_CIPHER_INIT_FAILURE;
if (aes_decrypt_key256 (key, (aes_decrypt_ctx *) (ks + sizeof (aes_encrypt_ctx))) != EXIT_SUCCESS)
return ERR_CIPHER_INIT_FAILURE;
return ERR_SUCCESS;
}
#endif
void EncryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo)
{
UINT64_STRUCT dataUnitNo;
dataUnitNo.LowPart = 0; dataUnitNo.HighPart = 0;
EncryptBufferXTS (buf, len, &dataUnitNo, 0, cryptoInfo->ks, cryptoInfo->ks2, 1);
}
void EncryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci)
{
EncryptBufferXTS (buf, nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, structUnitNo, 0, ci->ks, ci->ks2, 1);
}
void DecryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo)
{
UINT64_STRUCT dataUnitNo;
dataUnitNo.LowPart = 0; dataUnitNo.HighPart = 0;
DecryptBufferXTS (buf, len, &dataUnitNo, 0, cryptoInfo->ks, cryptoInfo->ks2, 1);
}
void DecryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci)
{
DecryptBufferXTS (buf, nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, structUnitNo, 0, ci->ks, ci->ks2, 1);
}
#endif // TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
#if !defined (TC_WINDOWS_BOOT) || defined (TC_WINDOWS_BOOT_AES)
static BOOL HwEncryptionDisabled = FALSE;
BOOL IsAesHwCpuSupported ()
{
#ifdef TC_WINDOWS_BOOT_AES
static BOOL state = FALSE;
static BOOL stateValid = FALSE;
if (!stateValid)
{
state = is_aes_hw_cpu_supported() ? TRUE : FALSE;
stateValid = TRUE;
}
return state && !HwEncryptionDisabled;
#elif defined (_M_ARM64) || defined(__arm__) || defined (__arm64__) || defined (__aarch64__)
return 0;
#else
return (HasAESNI() && !HwEncryptionDisabled)? TRUE : FALSE;
#endif
}
void EnableHwEncryption (BOOL enable)
{
#if defined (TC_WINDOWS_BOOT)
if (enable)
aes_hw_cpu_enable_sse();
#endif
HwEncryptionDisabled = !enable;
}
BOOL IsHwEncryptionEnabled ()
{
return !HwEncryptionDisabled;
}
#endif // !TC_WINDOWS_BOOT
#if !defined (TC_WINDOWS_BOOT) && !defined (_UEFI)
static BOOL CpuRngDisabled = TRUE;
static BOOL RamEncryptionEnabled = FALSE;
BOOL IsCpuRngSupported ()
{
if (HasRDSEED() || HasRDRAND())
return TRUE;
else
return FALSE;
}
void EnableCpuRng (BOOL enable)
{
CpuRngDisabled = !enable;
}
BOOL IsCpuRngEnabled ()
{
return !CpuRngDisabled;
}
BOOL IsRamEncryptionSupported ()
{
#ifdef _WIN64
if (t1ha_selfcheck__t1ha2() == 0)
return TRUE;
else
return FALSE;
#else
return FALSE;
#endif
}
void EnableRamEncryption (BOOL enable)
{
RamEncryptionEnabled = enable;
}
BOOL IsRamEncryptionEnabled ()
{
return RamEncryptionEnabled;
}
/* masking for random index to remove bias */
byte GetRngMask (byte count)
{
if (count >= 128)
return 0xFF;
if (count >= 64)
return 0x7F;
if (count >= 32)
return 0x3F;
if (count >= 16)
return 0x1F;
if (count >= 8)
return 0x0F;
if (count >= 4)
return 0x07;
if (count >= 2)
return 0x03;
return 1;
}
byte GetRandomIndex (ChaCha20RngCtx* pCtx, byte elementsCount)
{
byte index = 0;
byte mask = GetRngMask (elementsCount);
while (TRUE)
{
ChaCha20RngGetBytes (pCtx, &index, 1);
index &= mask;
if (index < elementsCount)
break;
}
return index;
}
#if defined(_WIN64) && !defined (_UEFI)
/* declaration of variables and functions used for RAM encryption on 64-bit build */
static byte* pbKeyDerivationArea = NULL;
static ULONG cbKeyDerivationArea = 0;
static uint64 HashSeedMask = 0;
static uint64 CipherIVMask = 0;
#ifdef TC_WINDOWS_DRIVER
ULONG AllocTag = 'MMCV';
#endif
#if !defined(PAGE_SIZE)
#define PAGE_SIZE 4096
#endif
BOOL InitializeSecurityParameters(GetRandSeedFn rngCallback)
{
ChaCha20RngCtx ctx;
byte pbSeed[CHACHA20RNG_KEYSZ + CHACHA20RNG_IVSZ];
#ifdef TC_WINDOWS_DRIVER
byte i;
char randomStr[4];
Dump ("InitializeSecurityParameters BEGIN\n");
#endif
rngCallback (pbSeed, sizeof (pbSeed));
ChaCha20RngInit (&ctx, pbSeed, rngCallback, 0);
#ifdef TC_WINDOWS_DRIVER
/* Generate random value for tag that is similar to pool tag values used by Windows kernel.
* Fully random tag would be too suspicious and outstanding.
* First character is always a capital letter.
* Second character is a letter, lowercase or uppercase.
* Third character is a letter, lowercase or uppercase.
* Fourth character is a letter or a digit.
*/
/* 1. First character (Capital Letter) */
randomStr[0] = 'A' + GetRandomIndex(&ctx, 26);
/* 2. Second character (Letter) */
i = GetRandomIndex(&ctx, 52);
if (i < 26)
randomStr[1] = 'A' + i;
else
randomStr[1] = 'a' + (i - 26);
/* 3. Third character (Letter) */
i = GetRandomIndex(&ctx, 52);
if (i < 26)
randomStr[2] = 'A' + i;
else
randomStr[2] = 'a' + (i - 26);
/* 4. Fourth character (Letter or Digit) */
i = GetRandomIndex(&ctx, 62);
if (i < 26)
randomStr[3] = 'A' + i;
else if (i < 52)
randomStr[3] = 'a' + (i - 26);
else
randomStr[3] = '0' + (i - 52);
/* combine all characters in reverse order as explained in MSDN */
AllocTag = 0;
for (i = 0; i < 4; i++)
{
AllocTag = (AllocTag << 8) + randomStr[3-i];
}
#endif
cbKeyDerivationArea = 1024 * 1024;
do
{
pbKeyDerivationArea = (byte*) TCalloc(cbKeyDerivationArea);
if (!pbKeyDerivationArea)
cbKeyDerivationArea >>= 1;
} while (!pbKeyDerivationArea && (cbKeyDerivationArea >= (2*PAGE_SIZE)));
if (!pbKeyDerivationArea)
{
cbKeyDerivationArea = 0;
Dump ("InitializeSecurityParameters return=FALSE END\n");
return FALSE;
}
/* fill key derivation area with random bytes */
ChaCha20RngGetBytes (&ctx, pbKeyDerivationArea, cbKeyDerivationArea);
/* generate hash seed mask */
ChaCha20RngGetBytes(&ctx, (unsigned char*) &HashSeedMask, sizeof (HashSeedMask));
/* generate IV mask */
ChaCha20RngGetBytes(&ctx, (unsigned char*) &CipherIVMask, sizeof (CipherIVMask));
FAST_ERASE64 (pbSeed, sizeof (pbSeed));
burn (&ctx, sizeof (ctx));
#ifdef TC_WINDOWS_DRIVER
burn (randomStr, sizeof(randomStr));
Dump ("InitializeSecurityParameters return=TRUE END\n");
#endif
return TRUE;
}
void ClearSecurityParameters()
{
Dump ("ClearSecurityParameters BEGIN\n");
if (pbKeyDerivationArea)
{
FAST_ERASE64 (pbKeyDerivationArea, cbKeyDerivationArea);
TCfree (pbKeyDerivationArea);
pbKeyDerivationArea =NULL;
cbKeyDerivationArea = 0;
}
FAST_ERASE64 (&HashSeedMask, 8);
FAST_ERASE64 (&CipherIVMask, 8);
#ifdef TC_WINDOWS_DRIVER
burn (&AllocTag, sizeof (AllocTag));
#endif
Dump ("ClearSecurityParameters END\n");
}
#ifdef TC_WINDOWS_DRIVER
void VcProtectMemory (uint64 encID, unsigned char* pbData, size_t cbData, unsigned char* pbData2, size_t cbData2)
#else
void VcProtectMemory (uint64 encID, unsigned char* pbData, size_t cbData,
unsigned char* pbData2, size_t cbData2,
unsigned char* pbData3, size_t cbData3,
unsigned char* pbData4, size_t cbData4)
#endif
{
if (pbKeyDerivationArea)
{
uint64 hashLow, hashHigh, hashSeed, cipherIV;
uint64 pbKey[4];
ChaCha256Ctx ctx;
hashSeed = (((uint64) pbKeyDerivationArea) + encID) ^ HashSeedMask;
hashLow = t1ha2_atonce128(&hashHigh, pbKeyDerivationArea, cbKeyDerivationArea, hashSeed);
/* set the key to the hash result */
pbKey[0] = hashLow;
pbKey[1] = hashHigh;
/* we now have a 128-bit key and we will expand it to 256-bit by using ChaCha12 cipher */
/* first we need to generate a the other 128-bit half of the key */
pbKey[2] = hashLow ^ hashHigh;
pbKey[3] = hashLow + hashHigh;
/* Initialize ChaCha12 cipher */
ChaCha256Init (&ctx, (unsigned char*) pbKey, (unsigned char*) &hashSeed, 12);
/* encrypt the key by itself */
ChaCha256Encrypt (&ctx, (unsigned char*) pbKey, sizeof(pbKey), (unsigned char*) pbKey);
/* Initialize ChaCha12 cipher */
cipherIV = (((uint64) pbKeyDerivationArea) + encID) ^ CipherIVMask;
ChaCha256Init (&ctx, (unsigned char*) pbKey, (unsigned char*) &cipherIV, 12);
ChaCha256Encrypt (&ctx, pbData, cbData, pbData);
ChaCha256Encrypt (&ctx, pbData2, cbData2, pbData2);
#ifndef TC_WINDOWS_DRIVER
ChaCha256Encrypt (&ctx, pbData3, cbData3, pbData3);
ChaCha256Encrypt (&ctx, pbData4, cbData4, pbData4);
#endif
FAST_ERASE64 (pbKey, sizeof(pbKey));
FAST_ERASE64 (&hashLow, 8);
FAST_ERASE64 (&hashHigh, 8);
FAST_ERASE64 (&hashSeed, 8);
FAST_ERASE64 (&cipherIV, 8);
burn (&ctx, sizeof (ctx));
}
}
uint64 VcGetEncryptionID (PCRYPTO_INFO pCryptoInfo)
{
return ((uint64) pCryptoInfo->ks) + ((uint64) pCryptoInfo->ks2)
#ifndef TC_WINDOWS_DRIVER
+ ((uint64) pCryptoInfo->master_keydata) + ((uint64) pCryptoInfo->k2)
#endif
;
}
static void VcInternalProtectKeys (PCRYPTO_INFO pCryptoInfo, uint64 encID)
{
#ifdef TC_WINDOWS_DRIVER
VcProtectMemory (encID, pCryptoInfo->ks, MAX_EXPANDED_KEY, pCryptoInfo->ks2, MAX_EXPANDED_KEY);
#else
VcProtectMemory (encID, pCryptoInfo->ks, MAX_EXPANDED_KEY,
pCryptoInfo->ks2, MAX_EXPANDED_KEY,
pCryptoInfo->master_keydata, MASTER_KEYDATA_SIZE,
pCryptoInfo->k2, MASTER_KEYDATA_SIZE);
#endif
}
void VcProtectKeys (PCRYPTO_INFO pCryptoInfo, uint64 encID)
{
Dump ("VcProtectKeys BEGIN\n");
VcInternalProtectKeys (pCryptoInfo, encID);
Dump ("VcProtectKeys END\n");
}
void VcUnprotectKeys (PCRYPTO_INFO pCryptoInfo, uint64 encID)
{
Dump ("VcUnprotectKeys BEGIN\n");
VcInternalProtectKeys (pCryptoInfo, encID);
Dump ("VcUnprotectKeys END\n");
}
#endif
#endif
#if defined(_M_ARM64) || defined(__arm__) || defined (__arm64__) || defined (__aarch64__)
/* dummy implementation that should never be called */
void aes_hw_cpu_decrypt(const byte* ks, byte* data)
{
ks = ks;
data = data;
}
void aes_hw_cpu_decrypt_32_blocks(const byte* ks, byte* data)
{
ks = ks;
data = data;
}
void aes_hw_cpu_encrypt(const byte* ks, byte* data)
{
ks = ks;
data = data;
}
void aes_hw_cpu_encrypt_32_blocks(const byte* ks, byte* data)
{
ks = ks;
data = data;
}
#endif