keybow2040/examples/midi-sequencer.py

652 lines
25 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: 2021 Sandy Macdonald
#
# SPDX-License-Identifier: MIT
# A MIDI step sequencer, with four tracks and eight steps per track.
# The eight steps are on the top two rows of keys. Steps can be toggled on by
# tapping a step's key. Active steps are indicated with a brighter LED, and the
# currently playing step in the sequence is shown with a moving LED across the
# eight steps.
# Each track is colour-coded: track 1 is orange, track 2 blue, track 3 is pink,
# and track 4 is green. Tracks can be selected by pressing and holding the
# bottom left orange track select key and then tapping one of the four track
# keys on the row above. The currently focussed track's track select key (on the
# second bottom row) is highlighted in a brighter colour.
# A track can be toggled on or off (no notes are sent from that track, but notes
# are not deleted) by tapping the track's track select key. The track select LED
# for a track toggled off will not be lit.
# The sequencer is started and stopped by tapping the bottom right key, which is
# red when the sequencer is stopped, and green when it is playing.
# The sequencer can be cleared by holding the track selector key (orange, bottom
# left) and then holding the start/stop key (red/green, bottom right).
# A single track can be cleared by holding the track selector key, the track
# select key (on the second bottom row) for the track you want to clear, and
# then holding the start/stop key.
# Tempo can be increased or decreased by holding the tempo selector key (blue,
# second from left, on the bottom row) and then tapping blue key on the row
# above to shift tempo down, or the pink key to shift it up. Tempo is increased/
# decreased by 5 BPM on each press.
# If an active step is held down, the second bottom row of keys lights to allow
# the note to be shifted down/up (the left two keys, decremented/incremented by
# one each time) and the note velocity to be shifted down/up (the right two keys
# decremented/incremented by four each time).
# You'll need to connect Keybow 2040 to a computer running a DAW like Ableton,
# or other software synth, or to a hardware synth that accepts USB MIDI.
# Tracks' notes are sent on MIDI channels 1-4.
# Drop the keybow2040.py file into your `lib` folder on your `CIRCUITPY` drive,
# and then save this code in the `code.py` file.
# NOTE! Requires the adafruit_midi CircuitPython library also!
import time
import board
from keybow2040 import Keybow2040
import usb_midi
import adafruit_midi
from adafruit_midi.note_off import NoteOff
from adafruit_midi.note_on import NoteOn
## CONSTANTS. Change these to change the look and feel of the sequencer.
# These are the key numbers that represent each step in a track (the top two
# rows of four keys)
TRACK_KEYS = [3, 7, 11, 15, 2, 6, 10, 14]
ORANGE = (255, 255, 0)
BLUE = (0, 255, 175)
PINK = (255, 0, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
# The colours for the LEDs on each track: orange, blue, pink, green
TRACK_COLOURS = [ORANGE, BLUE, PINK, GREEN]
# The MIDI channels for each track in turn: 1, 2, 3, 4
MIDI_CHANNELS = [0, 1, 2, 3]
# The bottom left key, orange. When pressed, it brings up the track selector
# keys, the four keys on the row above it.
TRACK_SELECTOR = 0
TRACK_SELECTOR_KEYS = [1, 5, 9, 13]
TRACK_SELECTOR_COLOUR = ORANGE
# The bottom right key. When pressed, it toggles the sequencer on or off. Green
# indicates that it is currently playing, red that it is stopped.
START_STOP = 12
START_COLOUR = GREEN
STOP_COLOUR = RED
# The key second from left on the bottom row, blue. When pressed, it brings up
# the tempo down/up buttons on the row above it. The left blue key shifts the
# tempo down, the right pink key shifts the tempo up.
TEMPO_SELECTOR = 4
TEMPO_SELECTOR_COLOUR = BLUE
TEMPO_DOWN = 1
TEMPO_DOWN_COLOUR = BLUE
TEMPO_UP = 5
TEMPO_UP_COLOUR = PINK
NOTE_DOWN = 1
NOTE_DOWN_COLOUR = BLUE
NOTE_UP = 5
NOTE_UP_COLOUR = PINK
# When an active step is held down, the second bottom row of keys lights to
# allow the note to be shifted down/up (the left two keys) and the note velocity
# to be shifted down/up (the right two keys).
VELOCITY_DOWN = 9
VELOCITY_DOWN_COLOUR = BLUE
VELOCITY_UP = 13
VELOCITY_UP_COLOUR = PINK
# The default starting BPM.
BPM = 85
MAX_BPM = 200
# Dictates the time after which a key is "held".
KEY_HOLD_TIME = 0.25
# LED brightness settings for the track steps.
HIGH_BRIGHTNESS = 1.0
MID_BRIGHTNESS = 0.2
LOW_BRIGHTNESS = 0.05
# Start on middle C and a reasonably high velocity.
DEFAULT_NOTE = 60
DEFAULT_VELOCITY = 99
MAX_VELOCITY = 127
MAX_NOTE = 127
VELOCITY_STEP = 4
class Sequencer(Keybow2040):
"""
Represents the sequencer, with a set of Track instances, which in turn have
a set of Step instances. This class is a subclass of the Keybow2040 class,
so it inherits all of its methods and key methods.
:param i2c: the I2C bus for Keybow 2040
"""
def __init__(self, *args, **kwargs):
super(Sequencer, self).__init__(*args, **kwargs)
# Holds the list of MIDI channels for the tracks.
self.midi_channels = []
# Set the MIDI channels up.
for channel in MIDI_CHANNELS:
midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=channel)
self.midi_channels.append(midi)
# These keys represent the steps on the tracks.
self.track_keys = []
for i in range(len(TRACK_KEYS)):
track_key = self.keys[TRACK_KEYS[i]]
track_key.index = i
self.track_keys.append(track_key)
# These keys select and change the current track.
self.track_select_keys = []
for i in range(len(TRACK_SELECTOR_KEYS)):
track_select_key = self.keys[TRACK_SELECTOR_KEYS[i]]
track_select_key.rgb = TRACK_COLOURS[i]
self.track_select_keys.append(track_select_key)
self.track_select_keys_held = [False, False, False, False]
self.track_select_active = False
# Holds the list of tracks, a set of Track instances.
self.tracks = []
# Set the tracks up.
for i in range(4):
track = Track(self, i, i, TRACK_COLOURS[i])
self.tracks.append(track)
# Speed attributes.
self.bpm = BPM
self.tempo_selector = self.keys[TEMPO_SELECTOR]
self.tempo_selector.set_led(*TEMPO_SELECTOR_COLOUR)
self.tempo_select_active = False
self.tempo_down = self.keys[TEMPO_DOWN]
self.tempo_up = self.keys[TEMPO_UP]
# Step related stuff
self.num_steps = 8
self.this_step_num = 0
self.last_step_num = 0
self.steps_held = []
# Note change attributes.
self.note_down = self.keys[NOTE_DOWN]
self.note_up = self.keys[NOTE_UP]
self.velocity_down = self.keys[VELOCITY_DOWN]
self.velocity_up = self.keys[VELOCITY_UP]
# Is the sequencer running?
self.running = False
# Step time assumes the BPM is based on quarter notes.
self.step_time = 60.0 / self.bpm / (self.num_steps / 2)
self.last_step_time = time.monotonic()
# Set the default starting track to track 0
self.current_track = 0
# The start stop key.
self.start_stop = self.keys[START_STOP]
self.start_stop.set_led(*STOP_COLOUR)
self.start_stop_held = False
# The track selector key.
self.track_selector = self.keys[TRACK_SELECTOR]
self.track_selector.set_led(*TRACK_SELECTOR_COLOUR)
# Set the key hold time for all the keys. A little shorter than the
# default for Keybow. Makes controlling the sequencer a bit more fluid.
for key in self.keys:
key.hold_time = KEY_HOLD_TIME
# Attach step_select function to keys in track steps. If pressed it
# toggles the state of the step.
for key in self.track_keys:
@self.on_release(key)
def step_select(key):
if self.tracks[self.current_track].active:
if not key.held:
step = self.tracks[self.current_track].steps[key.index]
step.toggle()
if not step.active:
current_note = step.note
self.midi_channels[track.channel].send(NoteOff(current_note, 0))
step.note = DEFAULT_NOTE
step.velocity = DEFAULT_VELOCITY
else:
self.steps_held.remove(key.index)
self.note_down.led_off()
self.note_up.led_off()
self.velocity_down.led_off()
self.velocity_up.led_off()
self.update_track_select_keys(True)
# When step held, toggle on the note and velocity up/down keys.
@self.on_hold(key)
def step_change(key):
if self.tracks[self.current_track].active:
self.steps_held.append(key.index)
self.note_down.set_led(*NOTE_DOWN_COLOUR)
self.note_up.set_led(*NOTE_UP_COLOUR)
self.velocity_down.set_led(*VELOCITY_DOWN_COLOUR)
self.velocity_up.set_led(*VELOCITY_UP_COLOUR)
self.update_track_select_keys(False)
# Attach hold function to track selector key that sets it active and
# lights the track select keys.
@self.on_hold(self.track_selector)
def track_selector_hold(key):
self.track_select_active = True
for track in self.tracks:
track.update_track_select_key = True
# Attach release function to track selector key that sets it inactive
# and turns track select LEDs off.
@self.on_release(self.track_selector)
def track_selector_release(key):
self.track_select_active = False
self.update_track_select_keys(True)
# Handles track select/mute, tempo down/up, note down/up.
#
# If the tempo selector key (second from left, blue, on the bottom row)
# is held, pressing the tempo keys (the left two keys on the second
# bottom row, lit blue and pink) shifts the tempo down or up by
# 5 bpm each time it is pressed, with a lower limit of 5 BPM and upper
# limit of 200 BPM.
#
# If notes are held, then the four track select keys allow the held
# notes MIDI note number to be shifted down/up (track select keys 0
# and 1 respectively), or MIDI velocity to be shifted down/up (track
# select keys 2 and 3 respectively).
#
# If the track selector is not held, tapping this track button toggles
#the track on/off.
for key in self.track_select_keys:
@self.on_press(key)
def track_select_press(key):
index = TRACK_SELECTOR_KEYS.index(key.number)
if self.track_select_active:
self.current_track = index
elif self.tempo_select_active:
if index == 0:
if self.bpm > 5:
self.bpm -= 5
elif index == 1:
if self.bpm < 200:
self.bpm += 5
elif len(self.steps_held):
for i in self.steps_held:
step = self.tracks[self.current_track].steps[i]
if index == 0 or index == 1:
step.last_notes.append(step.note)
step.note_changed = True
if index == 0:
if step.note > 0:
step.note -= 1
elif index == 1:
if step.note < MAX_NOTE:
step.note += 1
elif index == 2:
if step.velocity > 0 + VELOCITY_STEP:
step.velocity -= VELOCITY_STEP
elif index == 3:
if step.velocity <= MAX_VELOCITY - VELOCITY_STEP:
step.velocity += VELOCITY_STEP
else:
self.tracks[index].active = not self.tracks[index].active
self.tracks[index].update_track_select_key = True
# Handlers to hold held states of track select keys.
for key in self.track_select_keys:
@self.on_hold(key)
def track_select_key_hold(key):
index = TRACK_SELECTOR_KEYS.index(key.number)
self.track_select_keys_held[index] = True
@self.on_release(key)
def track_select_key_release(key):
index = TRACK_SELECTOR_KEYS.index(key.number)
self.track_select_keys_held[index] = False
# Attach press function to start/stop key that toggles whether the
# sequencer is running and toggles its colour between green (running)
# and red (not running).
@self.on_press(self.start_stop)
def start_stop_toggle(key):
if not self.track_select_active:
if self.running:
self.running = False
key.set_led(*STOP_COLOUR)
else:
self.running = True
key.set_led(*START_COLOUR)
# Attach hold function, so that when the track selector key is held and
# the start/stop key is also held, clear all of the steps on all of the
# tracks. If a track select key is held, then clear just that track.
@self.on_hold(self.start_stop)
def start_stop_hold(key):
self.start_stop_held = True
if self.track_select_active:
if not any(self.track_select_keys_held):
self.clear_tracks()
for track in self.tracks:
track.midi_panic()
else:
for i, state in enumerate(self.track_select_keys_held):
if state:
self.tracks[i].clear_steps()
@self.on_release(self.start_stop)
def start_stop_release(key):
self.start_stop_held = False
# Attach hold function that lights the tempo down/up keys when the
# tempo selector key is held.
@self.on_hold(self.tempo_selector)
def tempo_selector_hold(key):
self.tempo_select_active = True
self.tempo_down.set_led(*TEMPO_DOWN_COLOUR)
self.tempo_up.set_led(*TEMPO_UP_COLOUR)
self.track_select_keys[2].led_off()
self.track_select_keys[3].led_off()
self.update_track_select_keys(False)
# Attach release function that furns off the tempo down/up LEDs.
@self.on_release(self.tempo_selector)
def tempo_selector_release(key):
self.tempo_select_active = False
self.tempo_down.led_off()
self.tempo_up.led_off()
self.update_track_select_keys(True)
def update(self):
# Update the superclass (Keybow2040).
super(Sequencer, self).update()
if self.running:
# Keep track of current time.
current_time = time.monotonic()
# If a step has elapsed...
if current_time - self.last_step_time > self.step_time:
for track in self.tracks:
if track.active:
# Turn last step off.
last_step = track.steps[self.last_step_num]
last_step.playing = False
last_step.update()
last_note = last_step.note
# Helps prevent stuck notes.
if last_step.note_changed:
for note in last_step.last_notes:
self.midi_channels[track.channel].send(NoteOff(note, 0))
last_step.note_changed = False
last_step.last_notes = []
# If last step is active, send MIDI note off message.
if last_step.active:
self.midi_channels[track.channel].send(NoteOff(last_note, 0))
# Turn this step on.
this_step = track.steps[self.this_step_num]
this_step.playing = True
this_step.update()
this_note = this_step.note
this_vel = this_step.velocity
# Helps prevent stuck notes
if this_step.note_changed:
for note in this_step.last_notes:
self.midi_channels[track.channel].send(NoteOff(note, 0))
this_step.note_changed = False
this_step.last_notes = []
# If this step is active, send MIDI note on message.
if this_step.active:
self.midi_channels[track.channel].send(NoteOn(this_note, this_vel))
# If track is not active, send note off for last note and this note.
else:
last_note = track.steps[self.last_step_num].note
this_note = track.steps[self.this_step_num].note
self.midi_channels[track.channel].send(NoteOff(last_note, 0))
self.midi_channels[track.channel].send(NoteOff(this_note, 0))
# This step is now the last step!
last_step = this_step
self.last_step_num = self.this_step_num
self.this_step_num += 1
# If we get to the end of the sequence, go back to the start.
if self.this_step_num == self.num_steps:
self.this_step_num = 0
# Keep track of last step time.
self.last_step_time = current_time
# Update the tracks.
for track in self.tracks:
track.update()
# Update the step_time, in case the BPM has been changed.
self.step_time = 60.0 / self.bpm / (self.num_steps / 2)
def clear_tracks(self):
# Clears the steps on all tracks.
for track in self.tracks:
track.clear_steps()
def update_track_select_keys(self, state):
# Updates all of the track select keys' states in one go.
for track in self.tracks:
track.update_track_select_key = state
class Track:
"""
Represents a track on the sequencer.
:param sequencer: the parent sequencer instance
:param index: the index of the track, integer
:param channel: the MIDI channel, integer
:param rgb: the RGB colour of the track, tuple of R, G, B, 0-255.
"""
def __init__(self, sequencer, index, channel, rgb):
self.index = index
self.rgb = rgb
self.channel = channel
self.steps = []
self.sequencer = sequencer
self.track_keys = self.sequencer.track_keys
self.update_track_leds = False
self.update_track_select_key = True
self.select_key = self.sequencer.track_select_keys[self.index]
# For each key in the track, create a Step instance and add to
# self.steps.
for i, key in enumerate(self.track_keys):
step = Step(i, key, self)
self.steps.append(step)
# Default to having the track active.
self.active = True
self.focussed = False
def set_on(self):
# Toggle the track on.
self.active = True
def set_off(self):
# Toggle the track off.
self.active = False
def update(self):
# Make the current track focussed and update its steps.
if sequencer.current_track == self.index:
self.focussed = True
self.update_steps()
else:
self.focussed = False
r, g, b = TRACK_COLOURS[self.index]
# Only update these keys if required, as it affects the BPM when
# constantly updating them. Light the focussed track in a bright colour.
# Turn the LED off for tracks that aren't active.
if self.update_track_select_key:
if not self.sequencer.track_select_active:
if self.active:
if not self.focussed:
r, g, b = rgb_with_brightness(r, g, b, brightness=LOW_BRIGHTNESS)
self.select_key.set_led(r, g, b)
else:
r, g, b = rgb_with_brightness(r, g, b, brightness=HIGH_BRIGHTNESS)
self.select_key.set_led(r, g, b)
else:
self.select_key.led_off()
self.update_track_select_key = False
else:
r, g, b = rgb_with_brightness(r, g, b, brightness=HIGH_BRIGHTNESS)
self.select_key.set_led(r, g, b)
self.update_track_select_key = False
def update_steps(self):
# Update a tracks steps.
for step in self.steps:
step.update()
def clear_steps(self):
# Clear a track's steps by setting them all to inactive.
for step in self.steps:
step.active = False
def midi_panic(self):
# Send note off messages for every note on this track's channel.
for i in range(128):
self.sequencer.midi_channels[self.channel].send(NoteOff(i, 0))
class Step:
"""
Represents a step on a track.
:param index: the index of the step, integer
:param key: the key attached to this step, integer
:param track: the track this step belongs to, Track instance.
"""
def __init__(self, index, key, track):
self.index = index
self.key = key
self.track = track
self.active = False
self.playing = False
self.held = False
self.velocity = DEFAULT_VELOCITY
self.note = DEFAULT_NOTE
self.last_notes = []
self.note_changed = False
self.rgb = self.track.rgb
self.sequencer = self.track.sequencer
def toggle(self):
# Toggle the step between active and inactive.
self.active = not self.active
def state(self):
# Returns the state of the track (active/inactve).
return self.active
def set_led(self, r, g, b, brightness):
# Set the step's LED. Has an additional brightness parameter from 0.0
# (off) to 1.0 (full brightness for the colour).
r, g, b = [int(c * brightness) for c in (r, g, b)]
self.key.set_led(r, g, b)
def update(self):
# Update the step. Pretty much just handles the LEDs.
r, g, b = self.rgb
# If this step's track is focussed...
if self.track.focussed:
# Only update the LEDs when the sequencer is running.
if self.sequencer.running:
if self.track.active:
# Make an active step that is currently being played full
# brightness.
if self.playing and self.active:
self.set_led(r, g, b, HIGH_BRIGHTNESS)
# Make an inactive step that is "playing" (the current step)
# the dimmest brightness, but bright enough to indicate the
# step the sequencer is on.
if self.playing and not self.active:
self.set_led(r, g, b, LOW_BRIGHTNESS)
# Make an active step that is not playing a low-medium
# brightness to indicate that it is toggled active.
if not self.playing and self.active:
self.set_led(r, g, b, MID_BRIGHTNESS)
# Turn not playing, not active steps off.
if not self.playing and not self.active:
self.set_led(0, 0, 0, 0)
else:
self.set_led(0, 0, 0, 0)
# If the sequencer is not running, still show the active steps.
elif not self.sequencer.running:
if self.active:
self.set_led(r, g, b, 0.3)
else:
self.set_led(0, 0, 0, 0)
def rgb_with_brightness(r, g, b, brightness=1.0):
# Allows an RGB value to be altered with a brightness
# value from 0.0 to 1.0.
r, g, b = (int(c * brightness) for c in (r, g, b))
return r, g, b
# Set up Keybow's I2C bus.
i2c = board.I2C()
# Instantiate the sequencer.
sequencer = Sequencer(i2c)
while True:
# Always remember to call sequencer.update() on every iteration of the main
# loop, otherwise NOTHING WILL WORK!
sequencer.update()