Many keyboards in the QMK Firmware repo are "split" keyboards. They use two controllers—one plugging into USB, and the second connected by a serial or an I<sup>2</sup>C connection over a TRRS or similar cable.
Split keyboards can have a lot of benefits, but there is some additional work needed to get them enabled.
QMK Firmware has a generic implementation that is usable by any board, as well as numerous board specific implementations.
For this, we will mostly be talking about the generic implementation used by the Let's Split and other keyboards.
!> Both sides must use the same MCU family, for eg two Pro Micro-compatible controllers or two Blackpills. Currently, mixing AVR and ARM is not possible as ARM vs AVR uses different method for serial communication, and are not compatible. Moreover Blackpill's uses 3.3v logic, and atmega32u4 uses 5v logic.
This assumes that you're using two Pro Micro-compatible controllers, and are using TRRS jacks to connect to two halves.
### Required Hardware
Apart from diodes and key switches for the keyboard matrix in each half, you will need 2x TRRS sockets and 1x TRRS cable.
Alternatively, you can use any sort of cable and socket that has at least 3 wires.
If you want to use I<sup>2</sup>C to communicate between halves, you will need a cable with at least 4 wires and 2x 4.7kΩ pull-up resistors.
#### Considerations
The most commonly used connection is a TRRS cable and jacks. These provide 4 wires, making them very useful for split keyboards, and are easy to find.
However, since one of the wires carries VCC, this means that the boards are not hot pluggable. You should always disconnect the board from USB before unplugging and plugging in TRRS cables, or you can short the controller, or worse.
Another option is to use phone cables (as in, old school RJ-11/RJ-14 cables). Make sure that you use one that actually supports 4 wires/lanes.
However, USB cables, SATA cables, and even just 4 wires have been known to be used for communication between the controllers.
!> Using USB cables for communication between the controllers works just fine, but the connector could be mistaken for a normal USB connection and potentially short out the keyboard, depending on how it's wired. For this reason, they are not recommended for connecting split keyboards.
The pull-up resistors may be placed on either half. If you wish to use the halves independently, it is also possible to use 4 resistors and have the pull-ups in both halves.
Note that the total resistance for the connected system should be within spec at 2.2k-10kOhm, with an 'ideal' at 4.7kOhm, regardless of the placement and number.
To enable the split keyboard feature, add the following to your `rules.mk`:
```make
SPLIT_KEYBOARD = yes
```
If you're using a custom transport (communication method), then you will also need to add:
```make
SPLIT_TRANSPORT = custom
```
### Setting Handedness
By default, the firmware does not know which side is which; it needs some help to determine that. There are several ways to do this, listed in order of precedence.
#### Handedness by Pin
You can configure the firmware to read a pin on the controller to determine handedness. To do this, add the following to your `config.h` file:
This will read the specified pin. By default, if it's high, then the controller assumes it is the left hand, and if it's low, it's assumed to be the right side.
This behaviour can be flipped by adding this to you `config.h` file:
You can configure the firmware to read key matrix pins on the controller to determine handedness. To do this, add the following to your `config.h` file:
```c
#define SPLIT_HAND_MATRIX_GRID D0, F1
```
The first pin is the output pin and the second is the input pin.
Some keyboards have unused intersections in the key matrix. This setting uses one of these unused intersections to determine the handness.
Normally, when a diode is connected to an intersection, it is judged to be left. If you add the following definition, it will be judged to be right.
Note that adding a diode at a previously unused intersection will effectively tell the firmware that there is a key held down at that point. You can instruct qmk to ignore that intersection by defining `MATRIX_MASKED` and then defining a `matrix_row_t matrix_mask[MATRIX_ROWS]` array in your keyboard config. Each bit of a single value (starting form the least-significant bit) is used to tell qmk whether or not to pay attention to key presses at that intersection.
While `MATRIX_MASKED` isn't necessary to use `SPLIT_HAND_MATRIX_GRID` successfully, without it you may experience issues trying to suspend your computer with your keyboard attached as the matrix will always report at least one key-press.
This method sets the keyboard's handedness by setting a flag in the persistent storage (`EEPROM`). This is checked when the controller first starts up, and determines what half the keyboard is, and how to orient the keyboard layout.
To enable this method, add the following to your `config.h` file:
Next, you will have to flash the EEPROM files once for the correct hand to the controller on each halve. You can do this manually with the following bootloader targets while flashing the firmware:
* AVR controllers with the Caterina bootloader (e.g. Pro Micro):
*`:avrdude-split-left`
*`:avrdude-split-right`
* AVR controllers with the stock Amtel DFU or DFU compatible bootloader (e.g. Elite-C):
*`:dfu-split-left`
*`:dfu-split-right`
* ARM controllers with a DFU compatible bootloader (e.g. Proton-C):
?> ARM controllers using `dfu-util` will require an EEPROM reset after setting handedness. This can be done using the `EEP_RST` keycode or [Bootmagic Lite](feature_bootmagic.md). Controllers using emulated EEPROM will always require handedness parameter when flashing the firmware.
?> [QMK Toolbox]() can also be used to flash EEPROM handedness files. Place the controller in bootloader mode and select menu option Tools -> EEPROM -> Set Left/Right Hand
This setting is not changed when re-initializing the EEPROM using the `EEP_RST` key, or using the `eeconfig_init()` function. However, if you reset the EEPROM outside of the firmware's built in options (such as flashing a file that overwrites the `EEPROM`, like how the [QMK Toolbox]()'s "Reset EEPROM" button works), you'll need to re-flash the controller with the `EEPROM` files.
This sets the pin to be used for serial communication. If you're not using serial, you shouldn't need to define this.
However, if you are using serial and I<sup>2</sup>C on the board, you will need to set this, and to something other than D0 and D1 (as these are used for I<sup>2</sup>C communication).
```c
#define SELECT_SOFT_SERIAL_SPEED {#}`
```
If you're having issues with serial communication, you can change this value, as it controls the communication speed for serial. The default is 1, and the possible values are:
This sets the maximum number of milliseconds before forcing a synchronization of data from master to slave. Under normal circumstances this sync occurs whenever the data _changes_, for safety a data transfer occurs after this number of milliseconds if no change has been detected since the last sync.
This sets the maximum number of failed communication attempts (one per scan cycle) from the master part before it assumes that no slave part is connected. This makes it possible to use a master part without the slave part connected.
Set to 0 to disable the disconnection check altogether.
```c
#define SPLIT_CONNECTION_CHECK_TIMEOUT 500
```
How long (in milliseconds) the master part should block all connection attempts to the slave after the communication has been flagged as disconnected (see `SPLIT_MAX_CONNECTION_ERRORS` above).
One communication attempt will be allowed everytime this amount of time has passed since the last attempt. If that attempt succeeds, the communication is seen as working again.
Set to 0 to disable this throttling of communications while disconnected. This can save you a couple of bytes of firmware size.
The following sync options add overhead to the split communication protocol and may negatively impact the matrix scan speed when enabled. These can be enabled by adding the chosen option(s) to your `config.h` file.
This mirrors the master side matrix to the slave side for features that react or require knowledge of master side key presses on the slave side. The purpose of this feature is to support cosmetic use of key events (e.g. RGB reacting to keypresses).
This enables syncing of the layer state between both halves of the split keyboard. The main purpose of this feature is to enable support for use of things like OLED display of the currently active layer.
This enables syncing of the Host LED status (caps lock, num lock, etc) between both halves of the split keyboard. The main purpose of this feature is to enable support for use of things like OLED display of the Host LED status.
This enables transmitting modifier state (normal, weak and oneshot) to the non primary side of the split keyboard. The purpose of this feature is to support cosmetic use of modifer state (e.g. displaying status on an OLED screen).
This enables transmitting the current WPM to the slave side of the split keyboard. The purpose of this feature is to support cosmetic use of WPM (e.g. displaying the current value on an OLED screen).
This enables transmitting the current OLED on/off status to the slave side of the split keyboard. The purpose of this feature is to support state (on/off state only) syncing.
This enables transmitting the current ST7565 on/off status to the slave side of the split keyboard. The purpose of this feature is to support state (on/off state only) syncing.
This enables transmitting the pointing device status to the master side of the split keyboard. The purpose of this feature is to enable use pointing devices on the slave side.
!> There is additional required configuration for `SPLIT_POINTING_ENABLE` outlined in the [pointing device documentation](feature_pointing_device.md?id=split-keyboard-configuration).
### Custom data sync between sides :id=custom-data-sync
QMK's split transport allows for arbitrary data transactions at both the keyboard and user levels. This is modelled on a remote procedure call, with the master invoking a function on the slave side, with the ability to send data from master to slave, process it slave side, and send data back from slave to master.
To leverage this, a keyboard or user/keymap can define a comma-separated list of _transaction IDs_:
The master side can then invoke the slave-side handler - for normal keyboard functionality to be minimally affected, any keyboard- or user-level code attempting to sync data should be throttled:
dprintf("Slave value: %d\n", s2m.s2m_data); // this will now be 11, as the slave adds 5
} else {
dprint("Slave sync failed!\n");
}
}
}
}
```
!> It is recommended that any data sync between halves happens during the master side's _housekeeping task_. This ensures timely retries should failures occur.
If only one-way data transfer is needed, helper methods are provided:
This allows you to specify a different set of pins for the matrix on the right side. This is useful if you have a board with differently-shaped halves that requires a different configuration (such as Keebio's Quefrency). The number of pins in the right and left matrices must be the same, if you have a board with a different number of rows or columns on one side, pad out the extra spaces with `NO_PIN` and make sure you add the unused rows or columns to your matrix.
This option enables synchronization of the RGB Light modes between the controllers of the split keyboard. This is for keyboards that have RGB LEDs that are directly wired to the controller (that is, they are not using the "extra data" option on the TRRS cable).
```c
#define RGBLED_SPLIT { 6, 6 }
```
This sets how many LEDs are directly connected to each controller. The first number is the left side, and the second number is the right side.
?> This setting implies that `RGBLIGHT_SPLIT` is enabled, and will forcibly enable it, if it's not.
Enabling this option changes the startup behavior to listen for an active USB communication to delegate which part is master and which is slave. With this option enabled and theres's USB communication, then that half assumes it is the master, otherwise it assumes it is the slave.
Without this option, the master is the half that can detect voltage on the physical USB connection (VBUS detection).
Master/slave delegation is made either by detecting voltage on VBUS connection or waiting for USB communication (`SPLIT_USB_DETECT`). Pro Micro boards can use VBUS detection out of the box and be used with or without `SPLIT_USB_DETECT`.
Many ARM boards, but not all, do not support VBUS detection. Because it is common that ARM boards lack VBUS detection, `SPLIT_USB_DETECT` is automatically defined on ARM targets (technically when ChibiOS is targetted).
Teensy boards lack VBUS detection out of the box and must have `SPLIT_USB_DETECT` defined. With the Teensy 2.0 and Teensy++ 2.0, there is a simple hardware mod that you can perform to add VBUS detection, so you don't need the `SPLIT_USB_DETECT` option.
* An appropriate Schottky diode, such as the [PMEG2005EH](https://www.digikey.com/en/products/detail/nexperia-usa-inc/PMEG2005EH,115/1589924)
You'll need to cut the small trace between the 5V and center pads on the back of the Teensy.
Once you have done that, you will want to solder the diode from the 5V pad to the center pad.
You may need to use the 5V pad from the regulator block above as the pads were too small and placed too closely together to place the Schottky diode properly.
Nicinabox has a [very nice and detailed guide](https://github.com/nicinabox/lets-split-guide) for the Let's Split keyboard, that covers most everything you need to know, including troubleshooting information.
However, the RGB Light section is out of date, as it was written long before the RGB Split code was added to QMK Firmware. Instead, wire each strip up directly to the controller.
<!-- I may port this information later, but for now ... it's very nice, and covers everything -->