20 KiB
ISP Flashing Guide
In order to flash a microcontroller over USB, it needs something called a bootloader. This bootloader lives in a specific section of the flash memory, and allows you to load the actual application firmware (in this case, QMK) into the rest of the flash.
However, it can sometimes happen that the bootloader becomes corrupted and needs reflashing, or you may want to change the bootloader to another one. It's not possible to do this with the existing bootloader, because, of course, it is already running, and cannot overwrite itself. Instead, you will need to ISP flash the microcontroller.
There are several different kinds of bootloaders available for AVR microcontrollers. Most STM32 ARM-based microcontrollers already have a USB-capable bootloader in ROM, so generally do not need to be ISP flashed. The one current exception is the STM32F103.
Hardware
One of the following devices is required to perform the ISP flashing. The product links are to the official versions, however you can certainly source them elsewhere.
You'll also need some jumper wires to connect the ISP flasher and the target board. Some boards have an ISP header with the necessary pins broken out. If not, then you will need to temporarily solder the wires to the PCB -- usually to switch pins or directly to the MCU.
The wiring is fairly straightforward; for the most part, you'll be connecting like to like. Refer to the target MCU's datasheet for the exact RESET
, SCLK
, MOSI
and MISO
pins.
Pro Micro as ISP
To use a 5V/16MHz Pro Micro as an ISP flashing tool, you will first need to load a special firmware onto it that emulates a hardware ISP flasher.
AVRDUDE Programmer: avrisp
AVRDUDE Port: Serial
Wiring
Pro Micro | Keyboard |
---|---|
VCC |
VCC |
GND |
GND |
10 (B6 ) |
RESET |
15 (B1 ) |
SCLK |
16 (B2 ) |
MOSI |
14 (B3 ) |
MISO |
!> Note that the 10
pin on the Pro Micro should be wired to the RESET
pin on the keyboard's controller. DO NOT connect the RESET
pin on the Pro Micro to the RESET
on the keyboard.
Teensy 2.0 as ISP
To use a Teensy 2.0 as an ISP flashing tool, you will first need to load a special firmware onto it that emulates a hardware ISP flasher.
AVRDUDE Programmer: avrisp
AVRDUDE Port: Serial
Wiring
Teensy | Keyboard |
---|---|
VCC |
VCC |
GND |
GND |
B0 |
RESET |
B1 |
SCLK |
B2 |
MOSI |
B3 |
MISO |
!> Note that the B0
pin on the Teensy should be wired to the RESET
pin on the keyboard's controller. DO NOT connect the RESET
pin on the Teensy to the RESET
on the keyboard.
SparkFun PocketAVR / USBtinyISP
SparkFun PocketAVR
Adafruit USBtinyISP
!> SparkFun PocketAVR and USBtinyISP DO NOT support AVR chips with more than 64 KiB of flash (e.g., the AT90USB128 series). This limitation is mentioned on the shop page for SparkFun PocketAVR and in the FAQ for USBtinyISP. If you try to use one of these programmers with AT90USB128 chips, you will get verification errors from avrdude
, and the bootloader won't be flashed properly (e.g., see the issue #3286).
AVRDUDE Programmer: usbtiny
AVRDUDE Port: usb
Wiring
ISP | Keyboard |
---|---|
VCC |
VCC |
GND |
GND |
RST |
RESET |
SCLK |
SCLK |
MOSI |
MOSI |
MISO |
MISO |
USBasp
AVRDUDE Programmer: usbasp
AVRDUDE Port: usb
Wiring
ISP | Keyboard |
---|---|
VCC |
VCC |
GND |
GND |
RST |
RESET |
SCLK |
SCLK |
MOSI |
MOSI |
MISO |
MISO |
Bus Pirate
!> The 5-pin "ICSP" header is for ISP flashing the PIC microcontroller of the Bus Pirate. Connect your target board to the 10-pin header opposite the USB connector instead.
AVRDUDE Programmer: buspirate
AVRDUDE Port: Serial
Wiring
Bus Pirate | Keyboard |
---|---|
+5V |
VCC |
GND |
GND |
RST |
RESET |
CLK |
SCLK |
MOSI |
MOSI |
MISO |
MISO |
Software
QMK Toolbox supports flashing both the ISP firmware and bootloader, but note that it cannot (currently) set the AVR fuse bytes for the actual ISP flashing step, so you may want to work with avrdude
directly instead.
Setting up the QMK environment is highly recommended, as it automatically installs avrdude
along with a host of other tools.
Bootloader Firmware
One of these files is what you will be ISP flashing onto the board. The default fuses are also listed.
If you're not sure what your board uses, look in the rules.mk
file for the keyboard in QMK. The MCU
and BOOTLOADER
lines will have the values you need. It may differ between different versions of the board.
Atmel DFU
These are the factory default bootloaders shipped by Atmel (now Microchip). Note that the AT90USB64 and AT90USB128 bootloaders are slightly modified, due to a bug causing them to not enumerate properly in Windows 8 and later.
MCU | Low | High | Extended | USB ID |
---|---|---|---|---|
ATmega16U4 | 0x5E |
0x99 / 0xD9 (JTAG disabled) |
0xF3 |
03EB:2FF3 |
ATmega32U4 | 0x5E |
0x99 / 0xD9 (JTAG disabled) |
0xF3 |
03EB:2FF4 |
AT90USB64 | 0x5E |
0x9B / 0xDB (JTAG disabled) |
0xF3 |
03EB:2FF9 |
AT90USB128 | 0x5E |
0x99 / 0xD9 (JTAG disabled) |
0xF3 |
03EB:2FFB |
Caterina
This is the default Arduino-style bootloader derived from the LUFA CDC bootloader, and is only for the ATmega32U4.
There are several variants depending on the vendor, but they all mostly work the same way. The SparkFun variants, for example, require the RESET
pin to be grounded twice quickly in order to stay in bootloader mode for more than 750 ms.
MCU | Low | High | Extended | USB ID |
---|---|---|---|---|
SparkFun Pro Micro (3V3/8MHz) | 0xFF |
0xD8 |
0xFE |
1B4F:9203 |
SparkFun Pro Micro (5V/16MHz) | 0xFF |
0xD8 |
0xFB |
1B4F:9205 |
SparkFun LilyPadUSB (and some Pro Micro clones) | 0xFF |
0xD8 |
0xFE |
1B4F:9207 |
Pololu A-Star 32U4* | 0xFF |
0xD0 |
0xF8 |
1FFB:0101 |
Adafruit Feather 32U4 | 0xFF |
0xD8 |
0xFB |
239A:000C |
Adafruit ItsyBitsy 32U4 (3V3/8MHz)* | 0xFF |
0xD8 |
0xFB |
239A:000D |
Adafruit ItsyBitsy 32U4 (5V/16MHz) | 0xFF |
0xD8 |
0xFB |
239A:000E |
Arduino Leonardo* | 0xFF |
0xD8 |
0xFB |
2341:0036 |
Arduino Micro* | 0xFF |
0xD8 |
0xFB |
2341:0037 |
?> Files marked with a * have combined Arduino sketches, which runs by default and also appears as a serial port. However, this is not the bootloader device.
BootloadHID (PS2AVRGB)
This bootloader is primarily for keyboards originally designed for the PS2AVRGB firmware and Bootmapper Client. It is not recommended for use in new designs.
MCU | Low | High | USB ID |
---|---|---|---|
ATmega32A | 0x0F |
0xD0 |
16C0:05DF |
USBaspLoader
USBaspLoader is a bootloader based on V-USB that emulates a hardware USBasp device. It runs on ATmega32A and ATmega328P MCUs.
Precompiled .hex
files are generally not available, but you can compile it yourself by setting up the QMK environment and following Coseyfannitutti's guide for the appropriate MCU:
MCU | Low | High | Extended | USB ID |
---|---|---|---|---|
ATmega32A | 0x1F |
0xC0 |
n/a | 16C0:05DC |
ATmega328P | 0xD7 |
0xD0 |
0x04 |
16C0:05DC |
Note that some boards may have their own specialized build of this bootloader in a separate repository. This will usually be linked to in the board's readme.
Flashing the Bootloader
Open a new Terminal window - if you are on Windows, use MSYS2 or QMK MSYS, not the Command Prompt. Navigate to the directory your bootloader .hex
is in. Now it's time to run the avrdude
command.
The syntax of avrdude
is:
avrdude -c <programmer> -P <port> -p <mcu> -U flash:w:<filename>:i
<programmer>
corresponds to the programmer type listed for each ISP flasher in the Hardware section, for exampleavrisp
.<port>
is the serial port that appears when you plug the ISP flasher in, if any. For some programmers this is simplyusb
(or you can omit the-P
argument completely) since they do not operate as a serial device.- Windows:
COMx
- check Device Manager, under the "Ports (COM & LPT)" section - Linux:
/dev/ttyACMx
- macOS:
/dev/tty.usbmodemXXXXXX
- Windows:
<mcu>
should be the lowercase name of the target AVR microcontroller, for exampleatmega32u4
.<filename>
is the absolute or relative path to the bootloader to be flashed, for exampleCaterina-Micro.hex
.
You can also run man avrdude
for more information.
If all goes well, you should get output similar to the following:
avrdude: AVR device initialized and ready to accept instructions
Reading | ################################################## | 100% 0.00s
avrdude: Device signature = 0x1e9587 (probably m32u4)
avrdude: NOTE: "flash" memory has been specified, an erase cycle will be performed
To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "Caterina-Micro.hex"
avrdude: writing flash (32730 bytes):
Writing | ################################################## | 100% 11.58s
avrdude: 32730 bytes of flash written
avrdude: verifying flash memory against Caterina-Micro.hex:
avrdude: load data flash data from input file Caterina-Micro.hex:
avrdude: input file Caterina-Micro.hex contains 32730 bytes
avrdude: reading on-chip flash data:
Reading | ################################################## | 100% 10.33s
avrdude: verifying ...
avrdude: 32730 bytes of flash verified
avrdude: safemode: Fuses OK (E:CB, H:D8, L:FF)
avrdude done. Thank you.
Setting the Fuses
This is a slightly more advanced topic, but may be necessary if you are switching from one bootloader to another (for example, Caterina to Atmel/QMK DFU on a Pro Micro). Fuses control some of the low-level functionality of the AVR microcontroller, such as clock speed, whether JTAG is enabled, and the size of the section of flash memory reserved for the bootloader, among other things. You can find a fuse calculator for many AVR parts here.
!> WARNING: Setting incorrect fuse values, in particular the clock-related bits, may render the MCU practically unrecoverable without high voltage programming (not covered here)! Make sure to double check the commands you enter before you execute them.
To set the fuses, add the following to the avrdude
command:
-U lfuse:w:0xXX:m -U hfuse:w:0xXX:m -U efuse:w:0xXX:m
where the lfuse
, hfuse
and efuse
arguments represent the low, high and extended fuse bytes as listed in the Hardware section.
?> You may get a warning from avrdude
that the extended fuse byte does not match what you provided when reading it back. If the second hex digit matches, this can usually be safely ignored, because the top four bits of this fuse do not actually exist on many AVR parts, and may read back as anything.
Creating a "Production" Firmware
For mass production purposes, it is possible to join the bootloader and QMK firmware together into a single file, due to the way the Intel Hex format works:
- Open the QMK firmware and bootloader
.hex
files in a text editor. - Remove the last line of the QMK firmware (which should be
:00000001FF
- this is just an "end of file" marker). - Paste the contents of the bootloader
.hex
file onto a new line at the end of the QMK firmware file, with no empty lines between. - Save it as a new file, for example
<keyboard>_<keymap>_production.hex
.
You can then ISP flash this combined firmware instead, which allows you to skip the extra step of flashing the QMK firmware over USB.
Flashing STM32Duino Bootloader
As mentioned above, most supported STM32 devices already possess a USB DFU bootloader which cannot be overwritten, however the ROM bootloader in the STM32F103 used on the Bluepill is not USB capable. In this case an ST-Link V2 dongle is required to upload the STM32Duino bootloader to the device. These can be readily purchased for relatively cheap on eBay and other places.
This bootloader is a descendant of the Maple bootloader by Leaflabs, and is compatible with dfu-util.
Software
To communicate with the ST-Link, you must install the following packages:
- macOS:
brew install stlink openocd
- Windows (MSYS2):
pacman -S mingw-w64-x86_64-stlink mingw-w64-x86_64-openocd
- Linux: will vary by distribution, but will likely be
stlink
andopenocd
through your particular package manager
Additionally, you may need to update the ST-Link's firmware with the STSW-LINK007
application. Note you will be asked to provide your name and email address if you do not have an ST.com account (this does not create one).
Finally, the bootloader binary itself can be downloaded from here.
Wiring
Connect the four-pin header on the end of the Bluepill to the matching pins on the ST-Link (the pinout will usually be printed on the side):
ST-Link | Bluepill |
---|---|
GND (6) |
GND |
SWCLK (2) |
DCLK |
SWDIO (4) |
DIO |
3.3V (8) |
3.3 |
Flashing
Firstly, make sure both jumpers on the Bluepill are set to 0.
Check that the ST-Link can talk to the Bluepill by running st-info --probe
:
Found 1 stlink programmers
version: V2J37S7
serial: 2C1219002B135937334D4E00
flash: 65536 (pagesize: 1024)
sram: 20480
chipid: 0x0410
descr: F1xx Medium-density
If the reported chipid
is 0x0410
, everything is working. If it is 0x0000
, check your wiring, and try swapping the SWDIO
and SWCLK
pins, as some ST-Link dongles may have incorrect pinouts.
Next, run the following command:
st-flash --reset --format binary write <path-to-bootloader> 0x08000000
where <path-to-bootloader>
is the path to the bootloader .bin
file above. You can run this command from the directory you downloaded it to, so that you can simply pass in the filename.
If all goes well, you should get output similar to the following:
st-flash 1.7.0
2022-03-08T12:16:30 INFO common.c: F1xx Medium-density: 20 KiB SRAM, 64 KiB flash in at least 1 KiB pages.
file generic_boot20_pc13.bin md5 checksum: 333c30605e739ce9bedee5999fdaf81b, stlink checksum: 0x0008e534
2022-03-08T12:16:30 INFO common.c: Attempting to write 7172 (0x1c04) bytes to stm32 address: 134217728 (0x8000000)
2022-03-08T12:16:30 INFO common.c: Flash page at addr: 0x08000000 erased
2022-03-08T12:16:30 INFO common.c: Flash page at addr: 0x08000400 erased
2022-03-08T12:16:31 INFO common.c: Flash page at addr: 0x08000800 erased
2022-03-08T12:16:31 INFO common.c: Flash page at addr: 0x08000c00 erased
2022-03-08T12:16:31 INFO common.c: Flash page at addr: 0x08001000 erased
2022-03-08T12:16:31 INFO common.c: Flash page at addr: 0x08001400 erased
2022-03-08T12:16:31 INFO common.c: Flash page at addr: 0x08001800 erased
2022-03-08T12:16:31 INFO common.c: Flash page at addr: 0x08001c00 erased
2022-03-08T12:16:31 INFO common.c: Finished erasing 8 pages of 1024 (0x400) bytes
2022-03-08T12:16:31 INFO common.c: Starting Flash write for VL/F0/F3/F1_XL
2022-03-08T12:16:31 INFO flash_loader.c: Successfully loaded flash loader in sram
2022-03-08T12:16:31 INFO flash_loader.c: Clear DFSR
8/ 8 pages written
2022-03-08T12:16:31 INFO common.c: Starting verification of write complete
2022-03-08T12:16:31 INFO common.c: Flash written and verified! jolly good!
2022-03-08T12:16:31 WARN common.c: NRST is not connected
Otherwise, if you receive an Unknown memory region
error, run the following command to unlock the STM32F103:
openocd -f interface/stlink.cfg -f target/stm32f1x.cfg -c "init; reset halt; stm32f1x unlock 0; reset halt; exit"
Then re-plug the ST-Link and try again.
After all of this, unplug the Bluepill from the ST-Link and connect it to USB. It should now be ready to flash using dfu-util, the QMK CLI or Toolbox.