qmk_sweep_skeletyl/docs/feature_joystick.md

7.5 KiB

Joystick

The keyboard can be made to be recognized as a joystick HID device by the operating system.

!> Joystick support is not currently available on V-USB devices.

The joystick feature provides two services:

  • reading analog input devices (eg. potentiometers)
  • sending gamepad HID reports

Both services can be used without the other, depending on whether you just want to read a device but not send gamepad reports (for volume control for instance) or send gamepad reports based on values computed by the keyboard.

Analog Input

To use analog input you must first enable it in rules.mk:

JOYSTICK_ENABLE = yes
JOYSTICK_DRIVER = analog # or 'digital'

An analog device such as a potentiometer found on a gamepad's analog axes is based on a voltage divider. It is composed of three connectors linked to the ground, the power input and power output (usually the middle one). The power output holds the voltage that varies based on the position of the cursor, which value will be read using your MCU's ADC. Depending on which pins are already used by your keyboard's matrix, the rest of the circuit can get a little bit more complicated, feeding the power input and ground connection through pins and using diodes to avoid bad interactions with the matrix scanning procedures.

Configuring the Joystick

By default, two axes and eight buttons are defined. This can be changed in your config.h:

// Max 32
#define JOYSTICK_BUTTON_COUNT 16
// Max 6: X, Y, Z, Rx, Ry, Rz
#define JOYSTICK_AXES_COUNT 3

When defining axes for your joystick, you have to provide a definition array. You can do this from your keymap.c file. A joystick will either be read from an input pin that allows the use of the ADC, or can be virtual, so that its value is provided by your code. You have to define an array of type ''joystick_config_t'' and of proper size.

There are three ways for your circuit to work with the ADC, that relies on the use of 1, 2 or 3 pins of the MCU:

  • 1 pin: your analog device is directly connected to your device GND and VCC. The only pin used is the ADC pin of your choice.
  • 2 pins: your analog device is powered through a pin that allows toggling it on or off. The other pin is used to read the input value through the ADC.
  • 3 pins: both the power input and ground are connected to pins that must be set to a proper state before reading and restored afterwards.

The configuration of each axis is performed using one of four macros:

  • JOYSTICK_AXIS_VIRTUAL: no ADC reading must be performed, that value will be provided by keyboard/keymap-level code
  • JOYSTICK_AXIS_IN(INPUT_PIN, LOW, REST, HIGH): a voltage will be read on the provided pin, which must be an ADC-capable pin.
  • JOYSTICK_AXIS_IN_OUT(INPUT_PIN, OUTPUT_PIN, LOW, REST, HIGH): the provided OUTPUT_PIN will be set high before INPUT_PIN is read.
  • JOYSTICK_AXIS_IN_OUT_GROUND(INPUT_PIN, OUTPUT_PIN, GROUND_PIN, LOW, REST, HIGH): the OUTPUT_PIN will be set high and GROUND_PIN will be set low before reading from INPUT_PIN.

In any case where an ADC reading takes place (when INPUT_PIN is provided), additional LOW, REST and HIGH parameters are used. These implement the calibration of the analog device by defining the range of read values that will be mapped to the lowest, resting position and highest possible value for the axis (-127 to 127). In practice, you have to provide the lowest/highest raw ADC reading, and the raw reading at resting position, when no deflection is applied. You can provide inverted LOW and HIGH to invert the axis.

For instance, an axes configuration can be defined in the following way:

//joystick config
joystick_config_t joystick_axes[JOYSTICK_AXES_COUNT] = {
    [0] = JOYSTICK_AXIS_IN_OUT_GROUND(A4, B0, A7, 900, 575, 285),
    [1] = JOYSTICK_AXIS_VIRTUAL
};

When the ADC reads 900 or higher, the returned axis value will be -127, whereas it will be 127 when the ADC reads 285 or lower. Zero is returned when 575 is read.

In this example, the first axis will be read from the A4 pin while B0 is set high and A7 is set low, using analogReadPin(), whereas the second axis will not be read.

Virtual Axes

To give a value to virtual axes, call joystick_set_axis(axis, value).

The following example adjusts two virtual axes (X and Y) based on keypad presses, with KC_P5 as a precision modifier:

joystick_config_t joystick_axes[JOYSTICK_AXES_COUNT] = {
    [0] = JOYSTICK_AXIS_VIRTUAL, // x
    [1] = JOYSTICK_AXIS_VIRTUAL  // y
};

static bool precision = false;
static uint16_t precision_mod = 64;
static uint16_t axis_val = 127;

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
    int16_t precision_val = axis_val;
    if (precision) {
        precision_val -= precision_mod;
    }

    switch (keycode) {
        case KC_P8:
            joystick_set_axis(1, record->event.pressed ? -precision_val : 0);
            return false;
        case KC_P2:
            joystick_set_axis(1, record->event.pressed ? precision_val : 0);
            return false;
        case KC_P4:
            joystick_set_axis(0, record->event.pressed ? -precision_val : 0);
            return false;
        case KC_P6:
            joystick_set_axis(0, record->event.pressed ? precision_val : 0);
            return false;
        case KC_P5:
            precision = record->event.pressed;
            return false;
    }
    return true;
}

Axis Resolution

By default, the resolution of each axis is 8 bit, giving a range of -127 to +127. If you need higher precision, you can increase it by defining eg. JOYSTICK_AXES_RESOLUTION 12 in your config.h. The resolution must be between 8 and 16.

Note that the supported AVR MCUs have a 10-bit ADC, and 12-bit for most STM32 MCUs.

Keycodes

Key Aliases Description
QK_JOYSTICK_BUTTON_0 JS_0 Button 0
QK_JOYSTICK_BUTTON_1 JS_1 Button 1
QK_JOYSTICK_BUTTON_2 JS_2 Button 2
QK_JOYSTICK_BUTTON_3 JS_3 Button 3
QK_JOYSTICK_BUTTON_4 JS_4 Button 4
QK_JOYSTICK_BUTTON_5 JS_5 Button 5
QK_JOYSTICK_BUTTON_6 JS_6 Button 6
QK_JOYSTICK_BUTTON_7 JS_7 Button 7
QK_JOYSTICK_BUTTON_8 JS_8 Button 8
QK_JOYSTICK_BUTTON_9 JS_9 Button 9
QK_JOYSTICK_BUTTON_10 JS_10 Button 10
QK_JOYSTICK_BUTTON_11 JS_11 Button 11
QK_JOYSTICK_BUTTON_12 JS_12 Button 12
QK_JOYSTICK_BUTTON_13 JS_13 Button 13
QK_JOYSTICK_BUTTON_14 JS_14 Button 14
QK_JOYSTICK_BUTTON_15 JS_15 Button 15
QK_JOYSTICK_BUTTON_16 JS_16 Button 16
QK_JOYSTICK_BUTTON_17 JS_17 Button 17
QK_JOYSTICK_BUTTON_18 JS_18 Button 18
QK_JOYSTICK_BUTTON_19 JS_19 Button 19
QK_JOYSTICK_BUTTON_20 JS_20 Button 20
QK_JOYSTICK_BUTTON_21 JS_21 Button 21
QK_JOYSTICK_BUTTON_22 JS_22 Button 22
QK_JOYSTICK_BUTTON_23 JS_23 Button 23
QK_JOYSTICK_BUTTON_24 JS_24 Button 24
QK_JOYSTICK_BUTTON_25 JS_25 Button 25
QK_JOYSTICK_BUTTON_26 JS_26 Button 26
QK_JOYSTICK_BUTTON_27 JS_27 Button 27
QK_JOYSTICK_BUTTON_28 JS_28 Button 28
QK_JOYSTICK_BUTTON_29 JS_29 Button 29
QK_JOYSTICK_BUTTON_30 JS_30 Button 30
QK_JOYSTICK_BUTTON_31 JS_31 Button 31

You can also trigger joystick buttons in code with register_joystick_button(button) and unregister_joystick_button(button), where button is the 0-based button index (0 = button 1).