* Disable RESET keycode because of naming conflicts * Add Pico SDK as submodule * Add RP2040 build support to QMK * Adjust USB endpoint structs for RP2040 * Add RP2040 bootloader and double-tap reset routine * Add generic and pro micro RP2040 boards * Add RP2040 onekey keyboard * Add WS2812 PIO DMA enabled driver and documentation Supports regular and open-drain output configuration. RP2040 GPIOs are sadly not 5V tolerant, so this is a bit use-less or needs extra hardware or you take the risk to fry your hardware. * Adjust SIO Driver for RP2040 * Adjust I2C Driver for RP2040 * Adjust SPI Driver for RP2040 * Add PIO serial driver and documentation * Add general RP2040 documentation * Apply suggestions from code review Co-authored-by: Nick Brassel <nick@tzarc.org> Co-authored-by: Nick Brassel <nick@tzarc.org>
17 KiB
'serial' Driver
The serial driver powers the Split Keyboard feature. Several implementations are available, depending on the platform of your split keyboard. Note that none of the drivers support split keyboards with more then two halves.
Driver | AVR | ARM | Connection between halves |
---|---|---|---|
Bitbang | ✔️ | ✔️ | Single wire communication. One wire is used for reception and transmission. |
USART Half-duplex | ✔️ | Efficient single wire communication. One wire is used for reception and transmission. | |
USART Full-duplex | ✔️ | Efficient two wire communication. Two distinct wires are used for reception and transmission. |
?> Serial in this context should be read as sending information one bit at a time, rather than implementing UART/USART/RS485/RS232 standards.
Bitbang
This is the Default driver, the absence of configuration assumes this driver. It works by bit banging a GPIO pin using the CPU. It is therefore not as efficient as a dedicated hardware peripheral, which the Half-duplex and Full-duplex drivers use.
!> On ARM platforms the bitbang driver causes connection issues when using it together with the bitbang WS2812 driver. Choosing alternate drivers for both serial and WS2812 (instead of bitbang) is strongly recommended.
Pin configuration
LEFT RIGHT
+-------+ SERIAL +-------+
| SSP |-----------------| SSP |
| | VDD | |
| |-----------------| |
| | GND | |
| |-----------------| |
+-------+ +-------+
One GPIO pin is needed for the bitbang driver, as only one wire is used for receiving and transmitting data. This pin is referred to as the SOFT_SERIAL_PIN
(SSP) in the configuration. A simple TRS or USB cable provides enough conductors for this driver to work.
Setup
To use the bitbang driver follow these steps to activate it.
- Change the
SERIAL_DRIVER
tobitbang
in your keyboardsrules.mk
file:
SERIAL_DRIVER = bitbang
- Configure the GPIO pin of your keyboard via the
config.h
file:
#define SOFT_SERIAL_PIN D0 // or D1, D2, D3, E6
- On ARM platforms you must turn on ChibiOS
PAL_USE_CALLBACKS
feature:
- In
halconf.h
add the line#define PAL_USE_CALLBACKS TRUE
.
USART Half-duplex
Targeting ARM boards based on ChibiOS, where communication is offloaded to a USART hardware device that supports Half-duplex operation. The advantages over bitbanging are fast, accurate timings and reduced CPU usage. Therefore it is advised to choose this driver or the Full-duplex driver whenever possible.
Pin configuration
LEFT RIGHT
+-------+ | | +-------+
| | R R | |
| | | SERIAL | | |
| TX |-----------------| TX |
| | VDD | |
| |-----------------| |
| | GND | |
| |-----------------| |
+-------+ +-------+
Only one GPIO pin is needed for the Half-duplex driver, as only one wire is used for receiving and transmitting data. This pin is referred to as the SERIAL_USART_TX_PIN
in the configuration. Take care that the pin you chose can act as the TX pin of the USART peripheral. A simple TRS or USB cable provides enough conductors for this driver to work. As the split connection is configured to work in open-drain mode, an external pull-up resistor is needed to keep the line high. Resistor values of 1.5kΩ to 8.2kΩ are known to work.
Setup
To use the Half-duplex driver follow these steps to activate it. If you target the Raspberry Pi RP2040 PIO implementation skip step 1.
- Change the
SERIAL_DRIVER
tousart
in your keyboardsrules.mk
file:
SERIAL_DRIVER = usart
- (RP2040 PIO only!) Change the
SERIAL_DRIVER
tovendor
in your keyboardsrules.mk
file:
SERIAL_DRIVER = vendor
- Configure the hardware of your keyboard via the
config.h
file:
#define SERIAL_USART_TX_PIN B6 // The GPIO pin that is used split communication.
For STM32 MCUs several GPIO configuration options can be changed as well. See the section "Alternate Functions for selected STM32 MCUs".
#define USART1_REMAP // Remap USART TX and RX pins on STM32F103 MCUs, see table below.
#define SERIAL_USART_TX_PAL_MODE 7 // Pin "alternate function", see the respective datasheet for the appropriate values for your MCU. default: 7
- Decide either for
SERIAL
,SIO
orPIO
subsystem, see the section "Choosing a driver subsystem".
USART Full-duplex
Targeting ARM boards based on ChibiOS where communication is offloaded to an USART hardware device. The advantages over bitbanging are fast, accurate timings and reduced CPU usage. Therefore it is advised to choose this driver or the Full-duplex driver whenever possible. Due to its internal design it is slightly more efficient then the Half-duplex driver, but it should be primarily chosen if Half-duplex operation is not supported by the USART peripheral.
Pin configuration
LEFT RIGHT
+-------+ +-------+
| | SERIAL | |
| TX |-----------------| RX |
| | SERIAL | |
| RX |-----------------| TX |
| | VDD | |
| |-----------------| |
| | GND | |
| |-----------------| |
+-------+ +-------+
Two GPIO pins are needed for the Full-duplex driver, as two distinct wires are used for receiving and transmitting data. The pin transmitting data is the TX
pin and refereed to as the SERIAL_USART_TX_PIN
, the pin receiving data is the RX
pin and refereed to as the SERIAL_USART_RX_PIN
in this configuration. Please note that TX
pin of the master half has to be connected with the RX
pin of the slave half and the RX
pin of the master half has to be connected with the TX
pin of the slave half! Usually this pin swap has to be done outside of the MCU e.g. with cables or on the PCB. Some MCUs like the STM32F303 used on the Proton-C allow this pin swap directly inside the MCU. A simple TRRS or USB cable provides enough conductors for this driver to work.
To use this driver the usart peripherals TX
and RX
pins must be configured with the correct Alternate-functions. If you are using a Proton-C everything is already setup, same is true for STM32F103 MCUs. For MCUs which are using a modern flexible GPIO configuration you have to specify these by setting SERIAL_USART_TX_PAL_MODE
and SERIAL_USART_RX_PAL_MODE
. Refer to the corresponding datasheets of your MCU or find those settings in the section "Alternate Functions for selected STM32 MCUs".
Setup
To use the Full-duplex driver follow these steps to activate it. If you target the Raspberry Pi RP2040 PIO implementation skip step 1.
- Change the
SERIAL_DRIVER
tousart
in your keyboardsrules.mk
file:
SERIAL_DRIVER = usart
- (RP2040 PIO only!) Change the
SERIAL_DRIVER
tovendor
in your keyboardsrules.mk
file:
SERIAL_DRIVER = vendor
- Configure the hardware of your keyboard via the
config.h
file:
#define SERIAL_USART_FULL_DUPLEX // Enable full duplex operation mode.
#define SERIAL_USART_TX_PIN B6 // USART TX pin
#define SERIAL_USART_RX_PIN B7 // USART RX pin
For STM32 MCUs several GPIO configuration options, including the ability for TX
to RX
pin swapping, can be changed as well. See the section "Alternate Functions for selected STM32 MCUs".
#define SERIAL_USART_PIN_SWAP // Swap TX and RX pins if keyboard is master halve. (Only available on some MCUs)
#define USART1_REMAP // Remap USART TX and RX pins on STM32F103 MCUs, see table below.
#define SERIAL_USART_TX_PAL_MODE 7 // Pin "alternate function", see the respective datasheet for the appropriate values for your MCU. default: 7
- Decide either for
SERIAL
,SIO
orPIO
subsystem, see the section "Choosing a driver subsystem".
Choosing a driver subsystem
The SERIAL
driver
The SERIAL
Subsystem is supported for the majority of ChibiOS MCUs and should be used whenever supported. Follow these steps in order to activate it:
- In your keyboards
halconf.h
add:
#define HAL_USE_SERIAL TRUE
- In your keyboards
mcuconf.h
: activate the USART peripheral that is used on your MCU. The shown example is for an STM32 MCU, so this will not work on MCUs by other manufacturers. You can find the correct names in themcuconf.h
files of your MCU that ship with ChibiOS.
Just below #include_next <mcuconf.h>
add:
#include_next <mcuconf.h>
#undef STM32_SERIAL_USE_USARTn
#define STM32_SERIAL_USE_USARTn TRUE
Where 'n' matches the peripheral number of your selected USART on the MCU.
- In you keyboards
config.h
: override the default USARTSERIAL
driver if you use a USART peripheral that does not belong to the default selectedSD1
driver. For instance, if you selectedSTM32_SERIAL_USE_USART3
the matching driver would beSD3
.
#define SERIAL_USART_DRIVER SD3
The SIO
driver
The SIO
Subsystem was added to ChibiOS with the 21.11 release and is only supported on selected MCUs. It should only be chosen when the SERIAL
subsystem is not supported by your MCU.
Follow these steps in order to activate it:
- In your keyboards
halconf.h
add:
#define HAL_USE_SIO TRUE
- In your keyboards
mcuconf.h:
activate the USART peripheral that is used on your MCU. The shown example is for an STM32 MCU, so this will not work on MCUs by other manufacturers. You can find the correct names in themcuconf.h
files of your MCU that ship with ChibiOS.
Just below #include_next <mcuconf.h>
add:
#include_next <mcuconf.h>
#undef STM32_SIO_USE_USARTn
#define STM32_SIO_USE_USARTn TRUE
Where 'n' matches the peripheral number of your selected USART on the MCU.
- In you keyboards
config.h
: override the default USARTSIO
driver if you use a USART peripheral that does not belong to the default selectedSIOD1
driver. For instance, if you selectedSTM32_SERIAL_USE_USART3
the matching driver would beSIOD3
.
#define SERIAL_USART_DRIVER SIOD3
The PIO
driver
The PIO
subsystem is a Raspberry Pi RP2040 specific implementation, using the integrated PIO peripheral and is therefore only available on this MCU. Because of the flexible nature of the PIO peripherals, any GPIO pin can be used as a TX
or RX
pin. Half-duplex and Full-duplex operation is fully supported. The Half-duplex operation mode uses the built-in pull-ups and GPIO manipulation on the RP2040 to drive the line high by default. An external pull-up is therefore not necessary.
Configure the hardware via your config.h:
#define SERIAL_PIO_USE_PIO1 // Force the usage of PIO1 peripheral, by default the Serial implementation uses the PIO0 peripheral
The Serial PIO program uses 2 state machines, 13 instructions and the complete interrupt handler of the PIO peripheral it is running on.
Advanced Configuration
There are several advanced configuration options that can be defined in your keyboards config.h
file:
Baudrate
If you're having issues or need a higher baudrate with serial communication, you can change the baudrate which in turn controls the communication speed for serial. You want to lower the baudrate if you experience failed transactions.
#define SELECT_SOFT_SERIAL_SPEED {#}
Speed | Bitbang | Half-duplex and Full-duplex |
---|---|---|
0 |
189000 baud (experimental) | 460800 baud |
1 |
137000 baud (default) | 230400 baud (default) |
2 |
75000 baud | 115200 baud |
3 |
39000 baud | 57600 baud |
4 |
26000 baud | 38400 baud |
5 |
20000 baud | 19200 baud |
Alternatively you can specify the baudrate directly by defining SERIAL_USART_SPEED
.
Timeout
This is the default time window in milliseconds in which a successful communication has to complete. Usually you don't want to change this value. But you can do so anyways by defining an alternate one in your keyboards config.h
file:
#define SERIAL_USART_TIMEOUT 20 // USART driver timeout. default 20
Troubleshooting
If you're having issues withe serial communication, you can enable debug messages that will give you insights which part of the communication failed. The enable these messages add to your keyboards config.h
file:
#define SERIAL_DEBUG
?> The messages will be printed out to the CONSOLE
output. For additional information, refer to Debugging/Troubleshooting QMK.
Alternate Functions for selected STM32 MCUs
Pins for USART Peripherals with
STM32F303 / Proton-C Datasheet
Pin Swap available: ✔️
Pin | Function | Mode |
---|---|---|
USART1 | ||
PA9 | TX | AF7 |
PA10 | RX | AF7 |
PB6 | TX | AF7 |
PB7 | RX | AF7 |
PC4 | TX | AF7 |
PC5 | RX | AF7 |
PE0 | TX | AF7 |
PE1 | RX | AF7 |
USART2 | ||
PA2 | TX | AF7 |
PA3 | RX | AF7 |
PA14 | TX | AF7 |
PA15 | RX | AF7 |
PB3 | TX | AF7 |
PB4 | RX | AF7 |
PD5 | TX | AF7 |
PD6 | RX | AF7 |
USART3 | ||
PB10 | TX | AF7 |
PB11 | RX | AF7 |
PC10 | TX | AF7 |
PC11 | RX | AF7 |
PD8 | TX | AF7 |
PD9 | RX | AF7 |
STM32F072 Datasheet
Pin Swap available: ✔️
Pin | Function | Mode |
---|---|---|
USART1 | ||
PA9 | TX | AF1 |
PA10 | RX | AF1 |
PB6 | TX | AF0 |
PB7 | RX | AF0 |
USART2 | ||
PA2 | TX | AF1 |
PA3 | RX | AF1 |
PA14 | TX | AF1 |
PA15 | RX | AF1 |
USART3 | ||
PB10 | TX | AF4 |
PB11 | RX | AF4 |
PC4 | TX | AF1 |
PC5 | RX | AF1 |
PC10 | TX | AF1 |
PC11 | RX | AF1 |
PD8 | TX | AF0 |
PD9 | RX | AF0 |
USART4 | ||
PA0 | TX | AF4 |
PA1 | RX | AF4 |
STM32F103 Medium Density (C8-CB) Datasheet
Pin Swap available: N/A
TX Pin is always Alternate Function Push-Pull, RX Pin is always regular input pin for any USART peripheral. For STM32F103 no additional Alternate Function configuration is necessary. QMK is already configured.
Pin remapping:
The pins of USART Peripherals use default Pins that can be remapped to use other pins using the AFIO registers. Default pins are marked bold. Add the appropriate defines to your config.h file.
Pin | Function | Mode | USART_REMAP |
---|---|---|---|
USART1 | |||
PA9 | TX | AFPP | |
PA10 | RX | IN | |
PB6 | TX | AFPP | USART1_REMAP |
PB7 | RX | IN | USART1_REMAP |
USART2 | |||
PA2 | TX | AFPP | |
PA3 | RX | IN | |
PD5 | TX | AFPP | USART2_REMAP |
PD6 | RX | IN | USART2_REMAP |
USART3 | |||
PB10 | TX | AFPP | |
PB11 | RX | IN | |
PC10 | TX | AFPP | USART3_PARTIALREMAP |
PC11 | RX | IN | USART3_PARTIALREMAP |
PD8 | TX | AFPP | USART3_FULLREMAP |
PD9 | RX | IN | USART3_FULLREMAP |