Maltronics Deauther config

This commit is contained in:
Spacehuhn 2021-01-10 22:45:35 +01:00
parent e238ae11c6
commit a559457dd9
5 changed files with 1564 additions and 20 deletions

View File

@ -13,6 +13,7 @@
// #define NODEMCU
// #define WEMOS_D1_MINI
// #define MALTRONICS
// #define DSTIKE_DEAUTHER_V1
// #define DSTIKE_DEAUTHER_V2
// #define DSTIKE_DEAUTHER_V3
@ -54,11 +55,22 @@
// #define RESET_SETTINGS
// ========== CONFIGS ========== //
#if defined(DSTIKE_D_DUINO_B_V5_LED_RING)
#if defined(MALTRONICS)
// ===== Reset ====== //
#define RESET_BUTTON 5
// ===== LED ===== //
#define LED_APA
#define LED_NUM 1
#define LED_APA_CLK 12
#define LED_APA_MOSI 13
#elif defined(DSTIKE_D_DUINO_B_V5_LED_RING)
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 12
#define LED_NUM 12
#define LED_NEOPIXEL_PIN 15
// ===== DISPLAY ===== //
@ -75,7 +87,7 @@
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
// ===== DISPLAY ===== //
@ -93,14 +105,14 @@
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
#elif defined(DSTIKE_DEAUTHER_OLED_V1_5_S)
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
// ===== DISPLAY ===== //
@ -153,7 +165,7 @@
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
// ===== DISPLAY ===== //
@ -170,7 +182,7 @@
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
#define HIGHLIGHT_LED 16
@ -191,14 +203,14 @@
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 4
#elif defined(DSTIKE_DEAUTHER_WATCH) || defined(DSTIKE_DEAUTHER_MINI)
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
#define HIGHLIGHT_LED 16
@ -217,7 +229,7 @@
// ===== LED ===== //
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 15
#define HIGHLIGHT_LED 16
@ -245,7 +257,7 @@
#define LED_MODE_IDLE 0, 255, 0
#define LED_MODE_BRIGHTNESS 10
#define LED_MY92_NUM 1
#define LED_NUM 1
#define LED_MY92_DATA 4
#define LED_MY92_CLK 5
#define LED_MY92_CH_R 0
@ -265,7 +277,7 @@
#define LED_MODE_IDLE 0, 255, 0
#define LED_MODE_BRIGHTNESS 10
#define LED_MY92_NUM 1
#define LED_NUM 1
#define LED_MY92_DATA 13
#define LED_MY92_CLK 15
#define LED_MY92_CH_R 0
@ -286,6 +298,11 @@
// ========= FALLBACK ========= //
// ===== Reset ====== //
#ifndef RESET_BUTTON
#define RESET_BUTTON 0
#endif // ifndef RESET_BUTTON
// ===== AUTOSAVE ===== //
#ifndef AUTOSAVE_ENABLED
#define AUTOSAVE_ENABLED true
@ -550,7 +567,7 @@
#define LED_NEOPIXEL_RGB
#define LED_NEOPIXEL_GRB
#define LED_NEOPIXEL_NUM 1
#define LED_NUM 1
#define LED_NEOPIXEL_PIN 255
#define LED_MODE_OFF 0,0,0
@ -559,7 +576,7 @@
#define LED_MODE_IDLE 0,255,0
#define LED_MODE_BRIGHTNESS 10
#define LED_MY92_NUM 1
#define LED_NUM 1
#define LED_MY92_DATA 4
#define LED_MY92_CLK 5
#define LED_MY92_CH_R 0

View File

@ -18,6 +18,8 @@
#include "src/Adafruit_NeoPixel-1.7.0/Adafruit_NeoPixel.h"
#elif defined(LED_MY92)
#include "src/my92xx-3.0.3/my92xx.h"
#elif defined(LED_APA)
#include "src/Adafruit_DotStar-1.1.4/Adafruit_DotStar.h"
#endif // if defined(LED_NEOPIXEL)
extern Attack attack;
@ -28,11 +30,13 @@ namespace led {
LED_MODE mode = OFF;
#if defined(LED_NEOPIXEL_RGB)
Adafruit_NeoPixel strip { LED_NEOPIXEL_NUM, LED_NEOPIXEL_PIN, NEO_RGB + NEO_KHZ400 };
Adafruit_NeoPixel strip { LED_NUM, LED_NEOPIXEL_PIN, NEO_RGB + NEO_KHZ400 };
#elif defined(LED_NEOPIXEL_GRB)
Adafruit_NeoPixel strip { LED_NEOPIXEL_NUM, LED_NEOPIXEL_PIN, NEO_GRB + NEO_KHZ400 };
Adafruit_NeoPixel strip { LED_NUM, LED_NEOPIXEL_PIN, NEO_GRB + NEO_KHZ400 };
#elif defined(LED_MY92)
my92xx myled { LED_MY92_MODEL, LED_MY92_NUM, LED_MY92_DATA, LED_MY92_CLK, MY92XX_COMMAND_DEFAULT };
my92xx myled { LED_MY92_MODEL, LED_NUM, LED_MY92_DATA, LED_MY92_CLK, MY92XX_COMMAND_DEFAULT };
#elif defined(LED_APA)
Adafruit_DotStar strip { LED_NUM, LED_APA_MOSI, LED_APA_CLK, DOTSTAR_BRG };
#endif // if defined(LED_NEOPIXEL_RGB)
@ -61,9 +65,9 @@ namespace led {
analogWrite(LED_PIN_R, r);
analogWrite(LED_PIN_G, g);
analogWrite(LED_PIN_B, b);
#elif defined(LED_NEOPIXEL)
#elif defined(LED_NEOPIXEL) || defined(LED_APA)
for (size_t i = 0; i < LED_NEOPIXEL_NUM; i++) {
for (size_t i = 0; i < LED_NUM; i++) {
strip.setPixelColor(i, r, g, b);
}
@ -86,7 +90,7 @@ namespace led {
if (LED_PIN_R < 255) pinMode(LED_PIN_R, OUTPUT);
if (LED_PIN_G < 255) pinMode(LED_PIN_G, OUTPUT);
if (LED_PIN_B < 255) pinMode(LED_PIN_B, OUTPUT);
#elif defined(LED_NEOPIXEL)
#elif defined(LED_NEOPIXEL) || defined(LED_APA)
strip.begin();
strip.setBrightness(LED_MODE_BRIGHTNESS);
strip.show();

View File

@ -0,0 +1,638 @@
/*!
* @file Adafruit_DotStar.cpp
*
* @mainpage Arduino Library for driving Adafruit DotStar addressable LEDs
* and compatible devicess -- APA102, etc.
*
* @section intro_sec Introduction
*
* This is the documentation for Adafruit's DotStar library for the
* Arduino platform, allowing a broad range of microcontroller boards
* (most AVR boards, many ARM devices, ESP8266 and ESP32, among others)
* to control Adafruit DotStars and compatible devices -- APA102, etc.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* @section author Author
*
* Written by Limor Fried and Phil Burgess for Adafruit Industries with
* contributions from members of the open source community.
*
* @section license License
*
* This file is part of the Adafruit_DotStar library.
*
* Adafruit_DotStar is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_DotStar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with DotStar. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Adafruit_DotStar.h"
#if !defined(__AVR_ATtiny85__)
#include <SPI.h>
#endif
#define USE_HW_SPI 255 ///< Assigned to dataPin to indicate 'hard' SPI
/*!
@brief DotStar constructor for hardware SPI. Must be connected to
MOSI, SCK pins.
@param n Number of DotStars in strand.
@param o Pixel type -- one of the DOTSTAR_* constants defined in
Adafruit_DotStar.h, for example DOTSTAR_BRG for DotStars
expecting color bytes expressed in blue, red, green order
per pixel. Default if unspecified is DOTSTAR_BRG.
@return Adafruit_DotStar object. Call the begin() function before use.
*/
Adafruit_DotStar::Adafruit_DotStar(uint16_t n, uint8_t o)
: numLEDs(n), dataPin(USE_HW_SPI), brightness(0), pixels(NULL),
rOffset(o & 3), gOffset((o >> 2) & 3), bOffset((o >> 4) & 3) {
updateLength(n);
}
/*!
@brief DotStar constructor for 'soft' (bitbang) SPI. Any two pins
can be used.
@param n Number of DotStars in strand.
@param data Arduino pin number for data out.
@param clock Arduino pin number for clock out.
@param o Pixel type -- one of the DOTSTAR_* constants defined in
Adafruit_DotStar.h, for example DOTSTAR_BRG for DotStars
expecting color bytes expressed in blue, red, green order
per pixel. Default if unspecified is DOTSTAR_BRG.
@return Adafruit_DotStar object. Call the begin() function before use.
*/
Adafruit_DotStar::Adafruit_DotStar(uint16_t n, uint8_t data, uint8_t clock,
uint8_t o)
: dataPin(data), clockPin(clock), brightness(0), pixels(NULL),
rOffset(o & 3), gOffset((o >> 2) & 3), bOffset((o >> 4) & 3) {
updateLength(n);
}
/*!
@brief Deallocate Adafruit_DotStar object, set data and clock pins
back to INPUT.
*/
Adafruit_DotStar::~Adafruit_DotStar(void) {
free(pixels);
if (dataPin == USE_HW_SPI)
hw_spi_end();
else
sw_spi_end();
}
/*!
@brief Initialize Adafruit_DotStar object -- sets data and clock pins
to outputs and initializes hardware SPI if necessary.
*/
void Adafruit_DotStar::begin(void) {
if (dataPin == USE_HW_SPI)
hw_spi_init();
else
sw_spi_init();
}
// Pins may be reassigned post-begin(), so a sketch can store hardware
// config in flash, SD card, etc. rather than hardcoded. Also permits
// "recycling" LED ram across multiple strips: set pins to first strip,
// render & write all data, reassign pins to next strip, render & write,
// etc. They won't update simultaneously, but usually unnoticeable.
/*!
@brief Switch over to hardware SPI. DotStars must be connected to
MOSI, SCK pins. Data in pixel buffer is unaffected and can
continue to be used.
*/
void Adafruit_DotStar::updatePins(void) {
sw_spi_end();
dataPin = USE_HW_SPI;
hw_spi_init();
}
/*!
@brief Switch over to 'soft' (bitbang) SPI. DotStars can be connected
to any two pins. Data in pixel buffer is unaffected and can
continue to be used.
@param data Arduino pin number for data out.
@param clock Arduino pin number for clock out.
*/
void Adafruit_DotStar::updatePins(uint8_t data, uint8_t clock) {
hw_spi_end();
dataPin = data;
clockPin = clock;
sw_spi_init();
}
/*!
@brief Change the length of a previously-declared Adafruit_DotStar
strip object. Old data is deallocated and new data is cleared.
Pin numbers and pixel format are unchanged.
@param n New length of strip, in pixels.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword.
*/
void Adafruit_DotStar::updateLength(uint16_t n) {
free(pixels);
uint16_t bytes = (rOffset == gOffset)
? n + ((n + 3) / 4)
: // MONO: 10 bits/pixel, round up to next byte
n * 3; // COLOR: 3 bytes/pixel
if ((pixels = (uint8_t *)malloc(bytes))) {
numLEDs = n;
clear();
} else {
numLEDs = 0;
}
}
// SPI STUFF ---------------------------------------------------------------
/*!
@brief Initialize hardware SPI.
@note This library is written in pre-SPI-transactions style and needs
some rewriting to correctly share the SPI bus with other devices.
*/
void Adafruit_DotStar::hw_spi_init(void) { // Initialize hardware SPI
#ifdef __AVR_ATtiny85__
PORTB &= ~(_BV(PORTB1) | _BV(PORTB2)); // Outputs
DDRB |= _BV(PORTB1) | _BV(PORTB2); // DO (NOT MOSI) + SCK
#elif (SPI_INTERFACES_COUNT > 0) || !defined(SPI_INTERFACES_COUNT)
SPI.begin();
// Hardware SPI clock speeds are chosen to run at roughly 1-8 MHz for most
// boards, providing a slower but more reliable experience by default. If
// you want faster LED updates, experiment with the clock speeds to find
// what works best with your particular setup.
#if defined(__AVR__) || defined(CORE_TEENSY) || defined(__ARDUINO_ARC__) || \
defined(__ARDUINO_X86__)
SPI.setClockDivider(SPI_CLOCK_DIV2); // 8 MHz (6 MHz on Pro Trinket 3V)
#else
#ifdef ESP8266
SPI.setFrequency(8000000L);
#elif defined(PIC32)
// Use begin/end transaction to set SPI clock rate
SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0));
SPI.endTransaction();
#else
SPI.setClockDivider((F_CPU + 4000000L) / 8000000L); // 8-ish MHz on Due
#endif
#endif
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
#endif
}
/*!
@brief Stop hardware SPI.
*/
void Adafruit_DotStar::hw_spi_end(void) {
#ifdef __AVR_ATtiny85__
DDRB &= ~(_BV(PORTB1) | _BV(PORTB2)); // Inputs
#elif (SPI_INTERFACES_COUNT > 0) || !defined(SPI_INTERFACES_COUNT)
SPI.end();
#endif
}
/*!
@brief Initialize 'soft' (bitbang) SPI. Data and clock pins are set
to outputs.
*/
void Adafruit_DotStar::sw_spi_init(void) {
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
#ifdef __AVR__
dataPort = portOutputRegister(digitalPinToPort(dataPin));
clockPort = portOutputRegister(digitalPinToPort(clockPin));
dataPinMask = digitalPinToBitMask(dataPin);
clockPinMask = digitalPinToBitMask(clockPin);
*dataPort &= ~dataPinMask;
*clockPort &= ~clockPinMask;
#else
digitalWrite(dataPin, LOW);
digitalWrite(clockPin, LOW);
#endif
}
/*!
@brief Stop 'soft' (bitbang) SPI. Data and clock pins are set to inputs.
*/
void Adafruit_DotStar::sw_spi_end() {
pinMode(dataPin, INPUT);
pinMode(clockPin, INPUT);
}
#ifdef __AVR_ATtiny85__
// Teensy/Gemma-specific stuff for hardware-half-assisted SPI
#define SPIBIT \
USICR = ((1 << USIWM0) | (1 << USITC)); \
USICR = \
((1 << USIWM0) | (1 << USITC) | (1 << USICLK)); // Clock bit tick, tock
static void spi_out(uint8_t n) { // Clock out one byte
USIDR = n;
SPIBIT SPIBIT SPIBIT SPIBIT SPIBIT SPIBIT SPIBIT SPIBIT
}
#elif (SPI_INTERFACES_COUNT > 0) || !defined(SPI_INTERFACES_COUNT)
// All other boards have full-featured hardware support for SPI
#define spi_out(n) (void)SPI.transfer(n) ///< Call hardware SPI function
// Pipelining reads next byte while current byte is clocked out
#if (defined(__AVR__) && !defined(__AVR_ATtiny85__)) || defined(CORE_TEENSY)
#define SPI_PIPELINE
#endif
#else // no hardware spi
#define spi_out(n) sw_spi_out(n)
#endif
/*!
@brief Soft (bitbang) SPI write.
@param n 8-bit value to transfer.
*/
void Adafruit_DotStar::sw_spi_out(uint8_t n) {
for (uint8_t i = 8; i--; n <<= 1) {
#ifdef __AVR__
if (n & 0x80)
*dataPort |= dataPinMask;
else
*dataPort &= ~dataPinMask;
*clockPort |= clockPinMask;
*clockPort &= ~clockPinMask;
#else
if (n & 0x80)
digitalWrite(dataPin, HIGH);
else
digitalWrite(dataPin, LOW);
digitalWrite(clockPin, HIGH);
#if F_CPU >= 48000000
__asm__ volatile("nop \n nop");
#endif
digitalWrite(clockPin, LOW);
#if F_CPU >= 48000000
__asm__ volatile("nop \n nop");
#endif
#endif
}
}
/* ISSUE DATA TO LED STRIP -------------------------------------------------
Although the LED driver has an additional per-pixel 5-bit brightness
setting, it is NOT used or supported here. On APA102, the normally
very fast PWM is gated through a much slower PWM (about 400 Hz),
rendering it useless for POV or other high-speed things that are
probably why one is using DotStars instead of NeoPixels in the first
place. I'm told that some APA102 clones use current control rather than
PWM for this, which would be much more worthwhile. Still, no support
here, no plans for it. If you really can't live without it, you can fork
the library and add it for your own use, but any pull requests for this
are unlikely be merged for the foreseeable future.
*/
/*!
@brief Transmit pixel data in RAM to DotStars.
*/
void Adafruit_DotStar::show(void) {
if (!pixels)
return;
uint8_t *ptr = pixels, i; // -> LED data
uint16_t n = numLEDs; // Counter
uint16_t b16 = (uint16_t)brightness; // Type-convert for fixed-point math
if (dataPin == USE_HW_SPI) {
// TO DO: modernize this for SPI transactions
#ifdef SPI_PIPELINE
uint8_t next;
for (i = 0; i < 3; i++)
spi_out(0x00); // First 3 start-frame bytes
SPDR = 0x00; // 4th is pipelined
do { // For each pixel...
while (!(SPSR & _BV(SPIF)))
; // Wait for prior byte out
SPDR = 0xFF; // Pixel start
for (i = 0; i < 3; i++) { // For R,G,B...
next = brightness ? (*ptr++ * b16) >> 8 : *ptr++; // Read, scale
while (!(SPSR & _BV(SPIF)))
; // Wait for prior byte out
SPDR = next; // Write scaled color
}
} while (--n);
while (!(SPSR & _BV(SPIF)))
; // Wait for last byte out
#else
for (i = 0; i < 4; i++)
spi_out(0x00); // 4 byte start-frame marker
if (brightness) { // Scale pixel brightness on output
do { // For each pixel...
spi_out(0xFF); // Pixel start
for (i = 0; i < 3; i++)
spi_out((*ptr++ * b16) >> 8); // Scale, write RGB
} while (--n);
} else { // Full brightness (no scaling)
do { // For each pixel...
spi_out(0xFF); // Pixel start
for (i = 0; i < 3; i++)
spi_out(*ptr++); // Write R,G,B
} while (--n);
}
#endif
// Four end-frame bytes are seemingly indistinguishable from a white
// pixel, and empirical testing suggests it can be left out...but it's
// always a good idea to follow the datasheet, in case future hardware
// revisions are more strict (e.g. might mandate use of end-frame
// before start-frame marker). i.e. let's not remove this. But after
// testing a bit more the suggestion is to use at least (numLeds+1)/2
// high values (1) or (numLeds+15)/16 full bytes as EndFrame. For details
// see also:
// https://cpldcpu.wordpress.com/2014/11/30/understanding-the-apa102-superled/
for (i = 0; i < ((numLEDs + 15) / 16); i++)
spi_out(0xFF);
} else { // Soft (bitbang) SPI
for (i = 0; i < 4; i++)
sw_spi_out(0); // Start-frame marker
if (brightness) { // Scale pixel brightness on output
do { // For each pixel...
sw_spi_out(0xFF); // Pixel start
for (i = 0; i < 3; i++)
sw_spi_out((*ptr++ * b16) >> 8); // Scale, write
} while (--n);
} else { // Full brightness (no scaling)
do { // For each pixel...
sw_spi_out(0xFF); // Pixel start
for (i = 0; i < 3; i++)
sw_spi_out(*ptr++); // R,G,B
} while (--n);
}
for (i = 0; i < ((numLEDs + 15) / 16); i++)
sw_spi_out(0xFF); // End-frame marker (see note above)
}
}
/*!
@brief Fill the whole DotStar strip with 0 / black / off.
*/
void Adafruit_DotStar::clear() {
memset(pixels, 0,
(rOffset == gOffset) ? numLEDs + ((numLEDs + 3) / 4)
: // MONO: 10 bits/pixel
numLEDs * 3); // COLOR: 3 bytes/pixel
}
/*!
@brief Set a pixel's color using separate red, green and blue components.
@param n Pixel index, starting from 0.
@param r Red brightness, 0 = minimum (off), 255 = maximum.
@param g Green brightness, 0 = minimum (off), 255 = maximum.
@param b Blue brightness, 0 = minimum (off), 255 = maximum.
*/
void Adafruit_DotStar::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
uint8_t b) {
if (n < numLEDs) {
uint8_t *p = &pixels[n * 3];
p[rOffset] = r;
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Set a pixel's color using a 32-bit 'packed' RGB value.
@param n Pixel index, starting from 0.
@param c 32-bit color value. Most significant byte is 0, second is
red, then green, and least significant byte is blue.
e.g. 0x00RRGGBB
*/
void Adafruit_DotStar::setPixelColor(uint16_t n, uint32_t c) {
if (n < numLEDs) {
uint8_t *p = &pixels[n * 3];
p[rOffset] = (uint8_t)(c >> 16);
p[gOffset] = (uint8_t)(c >> 8);
p[bOffset] = (uint8_t)c;
}
}
/*!
@brief Fill all or part of the DotStar strip with a color.
@param c 32-bit color value. Most significant byte is 0, second
is red, then green, and least significant byte is blue.
e.g. 0x00RRGGBB. If all arguments are unspecified, this
will be 0 (off).
@param first Index of first pixel to fill, starting from 0. Must be
in-bounds, no clipping is performed. 0 if unspecified.
@param count Number of pixels to fill, as a positive value. Passing
0 or leaving unspecified will fill to end of strip.
*/
void Adafruit_DotStar::fill(uint32_t c, uint16_t first, uint16_t count) {
uint16_t i, end;
if (first >= numLEDs) {
return; // If first LED is past end of strip, nothing to do
}
// Calculate the index ONE AFTER the last pixel to fill
if (count == 0) {
// Fill to end of strip
end = numLEDs;
} else {
// Ensure that the loop won't go past the last pixel
end = first + count;
if (end > numLEDs)
end = numLEDs;
}
for (i = first; i < end; i++) {
this->setPixelColor(i, c);
}
}
/*!
@brief Convert hue, saturation and value into a packed 32-bit RGB color
that can be passed to setPixelColor() or other RGB-compatible
functions.
@param hue An unsigned 16-bit value, 0 to 65535, representing one full
loop of the color wheel, which allows 16-bit hues to "roll
over" while still doing the expected thing (and allowing
more precision than the wheel() function that was common to
prior DotStar and NeoPixel examples).
@param sat Saturation, 8-bit value, 0 (min or pure grayscale) to 255
(max or pure hue). Default of 255 if unspecified.
@param val Value (brightness), 8-bit value, 0 (min / black / off) to
255 (max or full brightness). Default of 255 if unspecified.
@return Packed 32-bit RGB color. Result is linearly but not perceptually
correct, so you may want to pass the result through the gamma32()
function (or your own gamma-correction operation) else colors may
appear washed out. This is not done automatically by this
function because coders may desire a more refined gamma-
correction function than the simplified one-size-fits-all
operation of gamma32(). Diffusing the LEDs also really seems to
help when using low-saturation colors.
*/
uint32_t Adafruit_DotStar::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
uint8_t r, g, b;
// Remap 0-65535 to 0-1529. Pure red is CENTERED on the 64K rollover;
// 0 is not the start of pure red, but the midpoint...a few values above
// zero and a few below 65536 all yield pure red (similarly, 32768 is the
// midpoint, not start, of pure cyan). The 8-bit RGB hexcone (256 values
// each for red, green, blue) really only allows for 1530 distinct hues
// (not 1536, more on that below), but the full unsigned 16-bit type was
// chosen for hue so that one's code can easily handle a contiguous color
// wheel by allowing hue to roll over in either direction.
hue = (hue * 1530L + 32768) / 65536;
// Because red is centered on the rollover point (the +32768 above,
// essentially a fixed-point +0.5), the above actually yields 0 to 1530,
// where 0 and 1530 would yield the same thing. Rather than apply a
// costly modulo operator, 1530 is handled as a special case below.
// So you'd think that the color "hexcone" (the thing that ramps from
// pure red, to pure yellow, to pure green and so forth back to red,
// yielding six slices), and with each color component having 256
// possible values (0-255), might have 1536 possible items (6*256),
// but in reality there's 1530. This is because the last element in
// each 256-element slice is equal to the first element of the next
// slice, and keeping those in there this would create small
// discontinuities in the color wheel. So the last element of each
// slice is dropped...we regard only elements 0-254, with item 255
// being picked up as element 0 of the next slice. Like this:
// Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0
// Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0
// Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254
// and so forth. Hence, 1530 distinct hues (0 to 1529), and hence why
// the constants below are not the multiples of 256 you might expect.
// Convert hue to R,G,B (nested ifs faster than divide+mod+switch):
if (hue < 510) { // Red to Green-1
b = 0;
if (hue < 255) { // Red to Yellow-1
r = 255;
g = hue; // g = 0 to 254
} else { // Yellow to Green-1
r = 510 - hue; // r = 255 to 1
g = 255;
}
} else if (hue < 1020) { // Green to Blue-1
r = 0;
if (hue < 765) { // Green to Cyan-1
g = 255;
b = hue - 510; // b = 0 to 254
} else { // Cyan to Blue-1
g = 1020 - hue; // g = 255 to 1
b = 255;
}
} else if (hue < 1530) { // Blue to Red-1
g = 0;
if (hue < 1275) { // Blue to Magenta-1
r = hue - 1020; // r = 0 to 254
b = 255;
} else { // Magenta to Red-1
r = 255;
b = 1530 - hue; // b = 255 to 1
}
} else { // Last 0.5 Red (quicker than % operator)
r = 255;
g = b = 0;
}
// Apply saturation and value to R,G,B, pack into 32-bit result:
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
uint16_t s1 = 1 + sat; // 1 to 256; same reason
uint8_t s2 = 255 - sat; // 255 to 0
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
(((((b * s1) >> 8) + s2) * v1) >> 8);
}
/*!
@brief Query the color of a previously-set pixel.
@param n Index of pixel to read (0 = first).
@return 'Packed' 32-bit RGB value. Most significant byte is 0, second is
is red, then green, and least significant byte is blue.
*/
uint32_t Adafruit_DotStar::getPixelColor(uint16_t n) const {
if (n >= numLEDs)
return 0;
uint8_t *p = &pixels[n * 3];
return ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
/*!
@brief Adjust output brightness. Does not immediately affect what's
currently displayed on the LEDs. The next call to show() will
refresh the LEDs at this level.
@param b Brightness setting, 0=minimum (off), 255=brightest.
@note For various reasons I think brightness is better handled in
one's sketch, but it's here for parity with the NeoPixel
library. Good news is that brightness setting in this library
is 'non destructive' -- it's applied as color data is being
issued to the strip, not during setPixelColor(), and also
means that getPixelColor() returns the exact value originally
stored.
*/
void Adafruit_DotStar::setBrightness(uint8_t b) {
// Stored brightness value is different than what's passed. This
// optimizes the actual scaling math later, allowing a fast 8x8-bit
// multiply and taking the MSB. 'brightness' is a uint8_t, adding 1
// here may (intentionally) roll over...so 0 = max brightness (color
// values are interpreted literally; no scaling), 1 = min brightness
// (off), 255 = just below max brightness.
brightness = b + 1;
}
/*!
@brief Retrieve the last-set brightness value for the strip.
@return Brightness value: 0 = minimum (off), 255 = maximum.
*/
uint8_t Adafruit_DotStar::getBrightness(void) const {
return brightness - 1; // Reverse above operation
}
/*!
@brief A gamma-correction function for 32-bit packed RGB colors.
Makes color transitions appear more perceptially correct.
@param x 32-bit packed RGB color.
@return Gamma-adjusted packed color, can then be passed in one of the
setPixelColor() functions. Like gamma8(), this uses a fixed
gamma correction exponent of 2.6, which seems reasonably okay
for average DotStars in average tasks. If you need finer
control you'll need to provide your own gamma-correction
function instead.
*/
uint32_t Adafruit_DotStar::gamma32(uint32_t x) {
uint8_t *y = (uint8_t *)&x;
// All four bytes of a 32-bit value are filtered to avoid a bunch of
// shifting and masking that would be necessary for properly handling
// different endianisms (and each byte is a fairly trivial operation,
// so it might not even be wasting cycles vs a check and branch.
// In theory this might cause trouble *if* someone's storing information
// in the unused most significant byte of an RGB value, but this seems
// exceedingly rare and if it's encountered in reality they can mask
// values going in or coming out.
for (uint8_t i = 0; i < 4; i++)
y[i] = gamma8(y[i]);
return x; // Packed 32-bit return
}

View File

@ -0,0 +1,211 @@
/*!
* @file Adafruit_DotStar.h
*
* This file is part of the Adafruit_DotStar library.
*
* Adafruit_DotStar is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_DotStar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with DotStar. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef _ADAFRUIT_DOT_STAR_H_
#define _ADAFRUIT_DOT_STAR_H_
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#include <pins_arduino.h>
#endif
// Color-order flag for LED pixels (optional extra parameter to constructor):
// Bits 0,1 = R index (0-2), bits 2,3 = G index, bits 4,5 = B index
#define DOTSTAR_RGB (0 | (1 << 2) | (2 << 4)) ///< Transmit as R,G,B
#define DOTSTAR_RBG (0 | (2 << 2) | (1 << 4)) ///< Transmit as R,B,G
#define DOTSTAR_GRB (1 | (0 << 2) | (2 << 4)) ///< Transmit as G,R,B
#define DOTSTAR_GBR (2 | (0 << 2) | (1 << 4)) ///< Transmit as G,B,R
#define DOTSTAR_BRG (1 | (2 << 2) | (0 << 4)) ///< Transmit as B,R,G
#define DOTSTAR_BGR (2 | (1 << 2) | (0 << 4)) ///< Transmit as B,G,R
#define DOTSTAR_MONO 0 ///< Single-color strip WIP DO NOT USE, use RGB for now
// These two tables are declared outside the Adafruit_DotStar class
// because some boards may require oldschool compilers that don't
// handle the C++11 constexpr keyword.
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
Copy & paste this snippet into a Python REPL to regenerate:
import math
for x in range(256):
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _DotStarSineTable[256] = {
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
124};
/* Similar to above, but for an 8-bit gamma-correction table.
Copy & paste this snippet into a Python REPL to regenerate:
import math
gamma=2.6
for x in range(256):
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _DotStarGammaTable[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
255};
/*!
@brief Class that stores state and functions for interacting with
Adafruit DotStars and compatible devices.
*/
class Adafruit_DotStar {
public:
Adafruit_DotStar(uint16_t n, uint8_t o = DOTSTAR_BRG);
Adafruit_DotStar(uint16_t n, uint8_t d, uint8_t c, uint8_t o = DOTSTAR_BRG);
~Adafruit_DotStar(void);
void begin(void);
void show(void);
void setPixelColor(uint16_t n, uint32_t c);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
void setBrightness(uint8_t);
void clear();
void updateLength(uint16_t n);
void updatePins(void);
void updatePins(uint8_t d, uint8_t c);
/*!
@brief Get a pointer directly to the DotStar data buffer in RAM.
Pixel data is stored in a device-native format (a la the
DOTSTAR_* constants) and is not translated here. Applications
that access this buffer will need to be aware of the specific
data format and handle colors appropriately.
@return Pointer to DotStar buffer (uint8_t* array).
@note This is for high-performance applications where calling
setPixelColor() on every single pixel would be too slow (e.g.
POV or light-painting projects). There is no bounds checking
on the array, creating tremendous potential for mayhem if one
writes past the ends of the buffer. Great power, great
responsibility and all that.
*/
uint8_t *getPixels(void) const { return pixels; };
uint8_t getBrightness(void) const;
/*!
@brief Return the number of pixels in an Adafruit_DotStar strip object.
@return Pixel count (0 if not set).
*/
uint16_t numPixels(void) const { return numLEDs; };
uint32_t getPixelColor(uint16_t n) const;
/*!
@brief An 8-bit integer sine wave function, not directly compatible
with standard trigonometric units like radians or degrees.
@param x Input angle, 0-255; 256 would loop back to zero, completing
the circle (equivalent to 360 degrees or 2 pi radians).
One can therefore use an unsigned 8-bit variable and simply
add or subtract, allowing it to overflow/underflow and it
still does the expected contiguous thing.
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
a signed int8_t, but you'll most likely want unsigned as this
output is often used for pixel brightness in animation effects.
*/
static uint8_t sine8(uint8_t x) {
return pgm_read_byte(&_DotStarSineTable[x]); // 0-255 in, 0-255 out
}
/*!
@brief An 8-bit gamma-correction function for basic pixel brightness
adjustment. Makes color transitions appear more perceptially
correct.
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
@return Gamma-adjusted brightness, can then be passed to one of the
setPixelColor() functions. This uses a fixed gamma correction
exponent of 2.6, which seems reasonably okay for average
DotStars in average tasks. If you need finer control you'll
need to provide your own gamma-correction function instead.
*/
static uint8_t gamma8(uint8_t x) {
return pgm_read_byte(&_DotStarGammaTable[x]); // 0-255 in, 0-255 out
}
/*!
@brief Convert separate red, green and blue values into a single
"packed" 32-bit RGB color.
@param r Red brightness, 0 to 255.
@param g Green brightness, 0 to 255.
@param b Blue brightness, 0 to 255.
@return 32-bit packed RGB value, which can then be assigned to a
variable for later use or passed to the setPixelColor()
function. Packed RGB format is predictable, regardless of
LED strand color order.
*/
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
static uint32_t gamma32(uint32_t x);
private:
uint16_t numLEDs; ///< Number of pixels
uint8_t dataPin; ///< If soft SPI, data pin #
uint8_t clockPin; ///< If soft SPI, clock pin #
uint8_t brightness; ///< Global brightness setting
uint8_t *pixels; ///< LED RGB values (3 bytes ea.)
uint8_t rOffset; ///< Index of red in 3-byte pixel
uint8_t gOffset; ///< Index of green byte
uint8_t bOffset; ///< Index of blue byte
#ifdef __AVR__
uint8_t dataPinMask; ///< If soft SPI, data pin bitmask
uint8_t clockPinMask; ///< If soft SPI, clock pin bitmask
volatile uint8_t *dataPort; ///< If soft SPI, data PORT
volatile uint8_t *clockPort; ///< If soft SPI, clock PORT
#endif
void hw_spi_init(void); ///< Start hardware SPI
void hw_spi_end(void); ///< Stop hardware SPI
void sw_spi_init(void); ///< Start bitbang SPI
void sw_spi_out(uint8_t n); ///< Bitbang SPI write
void sw_spi_end(void); ///< Stop bitbang SPI
};
#endif // _ADAFRUIT_DOT_STAR_H_

View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.